• Title/Summary/Keyword: Train velocity

Search Result 331, Processing Time 0.028 seconds

A Study on Dynamic Capacity Assessment of PSC Box Girder High Speed Railway Bridges Using Time Series Load (시계열하중을 이용한 PSC 박스 거더 고속철도교량의 동적성능 평가에 관한 연구)

  • Han, Sung Ho;Bang, Myung Seok;Lee, Woo Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.211-219
    • /
    • 2010
  • The design concept of high speed railway bridges is applied to a method for increasing the stiffness of existing bridge structures considering the impact factor by a static load. Generally, the process of structural design would be relied upon an advanced foreign technology. However, the dynamic amplification factor (DAF) and dynamic capacity assessment of high speed railway bridges may be conducted essentially a detailed estimation because the resonance phenomenon is affected by the long length (380 m) and high speed (300 km/h) moving of a high speed railway (Korea Train eXpress: KTX). Therefore, this study will be examined the dynamic capacity of the typical PSC Box Girder high speed railway bridge efficiently, and offered the basic information for the reasonable structural design. For this, the static analysis is conducted considering the load line diagram of KTX based upon existing references. In addition, the KTX moving load is transformed into the time series load considering various analytical variables. The time history analysis is assessed reasonable using the transformed time series load. At that time, analytical variables for calculating the time series load are considered loading node distance, time increment and KTX velocity variation etc. The dynamic capacity of the PSC Box Girder high speed railway bridge is examined based upon the FE analysis result systematically. The structural safety is assessed quantitatively in accordance with the related regulation of the inside and outside of the country.

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.

Correlation Analysis between Dynamic Wheel-Rail Force and Rail Grinding (차륜-레일 상호작용력과 레일연마의 상관관계 분석)

  • Park, Joon-Woo;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2017
  • In this study, the influences of rail surface roughness on dynamic wheel-rail forces currently employed in conventional lines were assessed by performing field measurements according to grinding of rail surface roughness. The influence of the grinding effect was evaluated using a previous empirical prediction model for dynamic wheel-rail forces; model includes first-order derivatives of QI (Quality Index) and vehicle velocity. The theoretical dynamic wheel-rail force determined using the previous prediction equation was analyzed using the QI, which decreased due to rail grinding as determined through field measurements. At a constant track support stiffness, an increase in the QI caused an increase in dynamic wheel-rail forces. Further, it can be inferred that the results of dynamic wheel-rail analysis obtained using the measured data, such as the variation of QI due to rail grinding, can be used to predict the peak dynamic forces. Therefore, it is obvious that the optimum amount of rail grinding can be determined by considering the QI, that was regarding an operation characteristics of the target track (vehicle velocity and wheel load).

Fatigue Reliability Evaluation of Steel-Composite High-Speed Railway Bridge with Tuned Mass Damper (동조질량감쇠기를 장착한 강합성형 고속철도교의 피로신뢰성 평가)

  • Kang, Soo-Chang;Seo, Jeong-Kwan;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.1-10
    • /
    • 2005
  • This study proposes a fatigue reliability evaluation procedure for steel-composite high-speed railway bridge based on dynamic analysis and investigates the effectiveness of Tuned Mass Damper(TMD) in terms of the extension of fatigue life of the bridge. For the fatigue reliability evaluation, the limit state is determined using S-N curve and linear fatigue-damage accumulation. Dynamic analyses are peformed repeatedly to consider the uncertainties of train-velocity and damping ratio of the bridge. The distribution of random variables related to fatigue damage for the intended service life is then statistically estimated from analytical results. Finally, the fatigue reliability indices are obtained by means of the Advanced First-Order Second-Moment (AFOSM) method. Through numerical simulation of a steel-composite bridge of 40m span, the effectiveness of TMD on fatigue life of the bridge is examined and the results are presented.

A Performance Evaluation of Zone Smoke Control Systems for Railway Underground Transit Passage by Smoke Control TAB (제연 TAB를 통한 철도 지하환승통로의 거실제연설비 성능평가)

  • Seol, Seok-Kyun;Kim, Joon-Hwan;Park, Min-Seok;Oh, Seung-Min;Ahn, Yong-Chul;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study conducted Testing, Adjusting, and Balancing (TAB), which is a type of field performance evaluation experiment of a zone smoke-control system, at a railway underground transit passage installed with a zone smoke- control system to find problems and improvements for ensuring performance. TAB for the smoke control system was classified into several procedures, such as design data review, duct leakage test, field measurement of the airflow rate, velocity of the fan and duct, and a smoke test. Through the duct leakage test, the system leakage ratio was examined to prove the duct sealing. The iImprovement of the smoke control airflow problems due to the lack of fan static pressure loss was the secured performance. The performance of the smoke control fan was secured by improvements of the smoke control airflow rate problems caused by the loss of static pressure in the intake duct. The smoke test in the smoke control zone confirmed that the damper operating schedule subject was influenced by natural wind or train wind.

Effects of Slope Changes During Body Weight-Supported Treadmill Training on Gait Characteristics in Patients With Hemiplegia

  • Hwang, Young-In;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.10-17
    • /
    • 2008
  • The purpose of this study was to determine the therapeutic effect of slope changes of the treadmill with body weight-supported training on gait characteristics in patients with hemiplegia. The volunteered subjects were divided into 3 groups based upon slope changes: control group ($0^{\circ}$ incline), $7^{\circ}$ group ($7^{\circ}$ incline), $12^{\circ}$ group ($12^{\circ}$ incline), They were trained the body weight-supported treadmill training (BWSTT) for 8 weeks. All subjects were supported up to 40% of their body weight on the treadmill training and the support was gradually decreased to 0~10% as the subjects were adapted to the training. There were significant improvements of walking velocity, step length of the affected side, the asymmetry ratio of step length in $7^{\circ}$ group (57.80 cm/s, 67.25 cm, .14), $12^{\circ}$ group (71.00 cm/s, 71.00 cm, .11) than control group (40.62 cm/s, 55.00 cm, .74) (p<.05): there were no differences between $7^{\circ}$ group and $12^{\circ}$ group in the all outcomes (p>.05). Both $7^{\circ}$ group and $12^{\circ}$ group scored higher than the control group in those outcomes and finally the effects of slopes changes of the treadmill were effective on gait characteristics of patients. But it s till remains undetermined what degree on the treadmill might be better to train the hemipareric patients. Therefore, more studies are required to look into minutely the changes of slopes of the treadmill influencing on gait characteristics.

  • PDF

Fatigue Analysis of Reduction Gears Unit in Rolling Stock Considering Operating Characteristics (운행특성을 고려한 철도차량 감속기의 피로해석)

  • Kim, Chul-Su;Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1085-1090
    • /
    • 2011
  • To assure the safety of rolling stock, it is important to perform the fatigue analysis of reduction gear unit in rolling stock considering a variation of velocity and traction motor capability. This paper presents fatigue analysis of the damage of reduction gear unit of railway vehicle under variable amplitude loading(VAL) based on quasi-static fatigue analysis using finite element model and linear Miner's rule. The VAL for the simulation was constructed from the tractive effort curve and train run curves of railway vehicle under commercial operation condition using MSC.ADAMS dynamic analysis. The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the middle gear based on strain-life based approach. The results showed that the frequent high starting torque due to a quick start as well as increasing numbers of stops at station would decrease the fatigue life of reduction gear unit.

A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox (풍력발전기 증속기에 전달되는 풍하중 변동특성 연구)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, normal wind load and blast wind load are modeled mathematical. And the periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train. In normal wind load case, excitation frequency is 3X (X : Rotor speed). When the wind direction is $+22.5^{\circ}$, the horizontal axis of bending moment occur the 50% of main torque. This result leads to edge contact of gear teeth by shaft elastic deformation. In blast wind load case, excitation frequency are 3X,6X,9X. Additional, in the (+) direction of wind load, relative harmonic percentage is increase.

Development of Human Detection Algorithm for Automotive Radar (보행자 탐지용 차량용 레이더 신호처리 알고리즘 구현 및 검증)

  • Hyun, Eugin;Jin, Young-Seok;Kim, Bong-Seok;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • For an automotive surveillance radar system, fast-chirp train based FMCW (Frequency Modulated Continuous Wave) radar is a very effective method, because clutter and moving targets are easily separated in a 2D range-velocity map. However, pedestrians with low echo signals may be masked by strong clutter in actual field. To address this problem, we proposed in the previous work a clutter cancellation and moving target indication algorithm using the coherent phase method. In the present paper, we initially composed the test set-up using a 24 GHz FMCW transceiver and a real-time data logging board in order to verify this algorithm. Next, we created two indoor test environments consisting of moving human and stationary targets. It was found that pedestrians and strong clutter could be effectively separated when the proposed method is used. We also designed and implemented these algorithms in FPGA (Field Programmable Gate Array) in order to analyze the hardware and time complexities. The results demonstrated that the complexity overhead was nearly zero compared to when the typical method was used.

Identifications of Reflex Muscle Activities and Joint Moments Triggered by Electrical Stimulation to Sole of the Foot during Lokomat Treadmill Walking

  • Kim, Yong-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.344-350
    • /
    • 2010
  • The aim of this study was to investigate the characteristics of the flexion withdrawal reflex modulated during Lokomat treadmill walking in people with spinal cord injury. The influence of the limb position and movement were tested in 5 subjects with chronic spinal cord injury. EMG activities from tibialis anterior and moments of the hip joint elicited by the foot stimulation were examined during Lokomat treadmill walking. To trigger the flexion withdrawal reflex during Lokomat treadmill walking, a train of 10 stimulus pulses was applied at the skin of the medial arch. The TA EMG activity was modulated during gait phase and the largest TA reflex was obtained after heel-off and initial swing phase. During swing phase, TA EMG was 40.9% greater for the extended hip position (phase 6), compared with flexed hip position (phase 8). The measured reflex moment of the hip joint was also modulated during gait phase. In order to characterize the neural contribution of flexion reflex at the hip joint, we compared estimated moments consisted of the static and dynamic components with measured moment of the hip joint. The mean static gains of reflex hip moments for swing and stance phase are -0.1, -0.8, respectively. The mean dynamic gains of reflex hip moments are 0.25 for swing, 0.75 for stance phase. From this study, we postulate that the joint moment and muscle response of flexion withdrawal reflex have the phase-dependent modulation and linear relationship with hip angle and angular velocity for swing phase during Lokomat treadmill walking.