• Title/Summary/Keyword: Train velocity

Search Result 329, Processing Time 0.025 seconds

Partitioning method using kinematic uncoupling in train dynamics (열차 동역학에서 기구학적 비연성을 이용한 분할 해석 방법)

  • Park, J.H.;Yoo, H.H.;Hwang, Y.H.;Kim, C.H.
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can be partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.

  • PDF

Static equilibrium and linear vibration analysis of a high speed electric train system (고속전철 시스템의 정적평형 및 선형진동 해석)

  • 김종인;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix. The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power car vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the two are identified in this paper.

  • PDF

A Study of Dynamic Behavior in Braking States of Tilting Train (틸팅 차량의 곡선 주로 주행 시 감속에 따른 동적 특성 연구)

  • Lee, J.H.;Park, T.W.;Kim, Y.K.;Kim, S.W.;Hwang, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • Tilting train improves a traveling velocity through giving a tilt the car-body without ride comfort deterioration In curve. Dynamic behavior in deceleration will show quite another feature in constant velocity, In this study, we see through the dynamic behavior due to a variation of braking force in Korean Tilting Train. Hence we compose of 3D dynamic model, as well as we check upon the property in service braking condition and unique braking condition with a fault system. This study has the meaning with reference data of developing Korean Tilting Train test traveling.

  • PDF

A study on dynamic behavior in tractive and braking states of tilting train (틸팅차량의 견인 및 제동 상황시의 동적 특성에 관한 연구)

  • Park, J.Y.;Jung, I.H.;Lee, J.H.;Park, T.W.;Kim, S.W.;Kim, Y.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1107-1111
    • /
    • 2004
  • Tilting train improves a traveling velocity through giving a tilt the car-body without ride comfort deterioration in curve. Dynamic behavior in acceleration or deceleration will show quite another feature in constant velocity. In this study, we see through the dynamic behavior due to a variation of tractive force and braking force in Korean Tilting Train. Hence we compose of 3D dynamic model, as well as we check upon the property in service tractive condition and unique tractive condition with a fault motor. Besides we check upon the property in service braking condition and unique braking condition with a fault system. This study has the meaning with reference data of developing Korean Tilting Train test traveling.

  • PDF

Power-Space Functions in High Speed Railway Wireless Communications

  • Dong, Yunquan;Zhang, Chenshuang;Fan, Pingyi;Fan, Pingzhi
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • To facilitate the base station planning in high speed railway communication systems, it is necessary to consider the functional relationships between the base station transmit power and space parameters such as train velocity and cell radius. Since these functions are able to present some inherent system properties determined by its spatial topology, they will be referred to as the power-space functions in this paper. In light of the fact that the line-of-sight path persists the most power of the received signal of each passing train, this paper considers the average transmission rate and bounds on power-space functions based on the additive white Gaussian noise channel (AWGN) model. As shown by Monte Carlo simulations, using AWGN channel instead of Rician channel introduces very small approximation errors, but a tractable mathematical framework and insightful results. Particularly, lower bounds and upper bounds on the average transmission rate, as well as transmit power as functions of train velocity and cell radius are presented in this paper. It is also proved that to maintain a fixed amount of service or a fixed average transmission rate, the transmit power of a base station needs to be increased exponentially, if the train velocity or cell radius is increased, respectively.

Estimation of acceleration by noise rejection from velocity signals using Smoothing technique (Smoothing 기법을 이용한 속도신호의 노이즈제거 및 가속도 추정)

  • Lee K. W;Kim M. R;Ohn J. G;Hong Y. K
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.247-251
    • /
    • 2003
  • The velocity of train which is measured from pulse generator attached to TM is used for displaying or control signal of inverter and so on. Measured signals increase and decrease step-by-step by pulse counting or monotonously by F/V conversion. But noises and signal distortions by measuring error like alias make it difficult to provide correct velocity infomation and estimate the acceleration. In this paper, we investigated the performance of Smoothing method for suppressing the noises in velocity signals. And the difference between Smoothed signal and origin velocity signals is inspected and the comparison with low pass filtering show applicable of Smoothing method for noise rejection and the estimation of signal. Finally, acceleration curves estimated from Smoothing method are compared with real accelerator signal attached to train.

  • PDF

A Measurement and Analysis on the Noise of 'Mugungwha' Train (무궁화 열차의 소음 측정 및 분석)

  • 신민철;왕세명;조준호;김대성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.394-399
    • /
    • 2004
  • Train is one of the most famous and convenient transporting ways. However, the noise problem caused by the train hinders people from living in a silent environment. Furthermore, this problem is related with the environmental rights of people nearby the railroad. The estimation of train noise is the pre-research of train noise reduction. This research is about measurement and analysis of train noise which can be a base-study about the estimation of train n(lise. The noise of ‘Mugungwha’ train, the most frequently used train in Korea, is the main object in this measurement and analysis. The characteristics of the train noise were evident in the criteria of height, distance and velocity. Furthermore, the noise differences between locomotive and passenger coach were observable.

  • PDF

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed (고속철도 노반지지조건에 따른 임계속도효과의 동적응답)

  • Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

The Basic Design of Rubber tire AGT Considering Running Condition (주행조건을 고려한 고무차륜 경량전철의 기본설계)

  • 이은규;김상용;한석윤
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.271-281
    • /
    • 2000
  • A number of variables and environment are concerned for the basic design of train. The design of train ran be optimized by the ruining simulation. And using the simulation result the consuming energy, regenerating power, adhesion coefficient, train traction control capacity are respectable. Considering these variables and for more information operating time, operating period, standard velocity and limit speed, the all factors of train are optimized. The light-tail tram is mainly divided into linear motor train, road surface train, iron wheel train and rubber tire train, and the most profitable one for adhesion coefficient is rubber tire train and the train will be designed.

  • PDF