• Title/Summary/Keyword: Train Wind

Search Result 253, Processing Time 0.03 seconds

A Study on Mass Reduction of Planetary Gear in Pitch Drive of Medium-sized Wind Turbine (중형 풍력발전기 피치 드라이브의 유성기어 경량화에 관한 연구)

  • Park, Seong-Gyu;Shin, Yoo-In;Kim, Dong-Myoung;Song, Chul-Ki
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Pitch drive system in wind turbine is composed by the planetary gear system to satisfied its required performance such as long life and light weight for gear train. When the planetary gear system can reduce its volume and weight, the power consumption of the wind turbine can be reduced. In this study, the planetary gear system of the pitch drive system in medium-sized wind turbine is obtained for weight reduction by shape optimization method. And the planetary gear system is verified for their strength by the structural analysis.

Simulation of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션)

  • Kwon, Sun-Hyung;Song, Seung-Ho;Choi, Ju-Yeop;Jeong, Seung-Gi;Choy, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.242-244
    • /
    • 2011
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. A Matlab/Simulink is used to investigate the response during the transient state.

  • PDF

Aerodynamic Load Analysis for 1MW HAWT Blade According to IEC61400-1 (바람조건에 따른 1MW급 수평축 풍력터빈 브레이드의 하중 해석)

  • Kim, Jin;Ryu, Ki-Wahn;Lee, Chang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.409-413
    • /
    • 2007
  • To assure the structural integrity for the hub and low speed shaft (LSS) of the drive train, it is necessary to obtain the ultimate aerodynamic loads acting on the wind turbine blade. The aim of this study is to predict the time histories of 3 forces and 3 moments at the hub and the LSS based on the design load case of the IEC 61400-1. From the calculated results most of the load components have rotor revolution frequency whereas thrust and torque of the LSS show blade passage frequency. It turns out that the EWM wind condition involves the maximum ultimate loads at both hub and LSS of the horizontal axis wind turbine.

  • PDF

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Effect of noise barrier on aerodynamic performance of high-speed train in crosswind

  • Zhao, Hai;Zhai, Wanming;Chen, Zaigang
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.509-525
    • /
    • 2015
  • A three-dimensional aerodynamic model and a vehicle dynamics model are established to investigate the effect of noise barrier on the dynamic performance of a high-speed train running on an embankment in crosswind in this paper. Based on the developed model, flow structures around the train with and without noise barrier are compared. Effect of the noise barrier height on the train dynamic performance is studied. Then, comparisons between the dynamic performance indexes of the train running on the windward track and on the leeward track are made. The calculated results show that the noise barrier has significant effects on the structure of the flow field around the train in crosswind and thus on the dynamic performance of the high-speed train. The dynamic performance of the train on the windward track is better than that on the leeward track. In addition, various heights of the noise barrier will have different effects on the train dynamic performance. The dynamic performance indexes keep decreasing with the increase of the noise barrier height before the height reaches a certain value, while these indexes have an inverse trend when the height is above this value. These results suggest that optimization on the noise barrier height is possible and demonstrate that the designed noise barrier height of the existing China Railway High-speed line analysed in this article is reasonable from the view point of the flow field structure and train dynamic performance although the noise barrier is always designed based on the noise-related standard.

A study on the train passage control at railroad bridge under heavy rainfall (철도교량 홍수시 열차운전규제기준에 대한 연구)

  • Park, Young-Kon;Lee, Jin-Wook;Yoon, Hee-Taek;Mok, Jai-Kyun;Kim, Seon-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1001-1006
    • /
    • 2004
  • Railroad disasters are frequently occurred by man-made causes or natural causes. In general, man-made causes are illegal construction practices, deterioration with the lapse of time and railroad crossing accidents, and natural causes are rainfall. snow, wind, earthquake, etc. Of cause, railroad disasters by man-made causes are prevented from keeping the safety principle, constructing multi-level crossing, securing enough men of ability and financial resources and making a thorough check using equipments with high capacity. And railroad disasters by natural causes are also minimized by construction of disaster prevention facilities, introduction and operation of general disaster prevention system and reasonable train passage control. Therefore, to setup the criterion of train passage control for train safety at railroad bridge under heavy rainfall, risky factors, national and oversea criteria under such circumstances are reviewed and a scheme to setup the criterion is suggested.

  • PDF

Flow Characteristics of the Ballast Blower for the Prevention a Foreign Object Damage on the Rail Road (선로상 이물질 제거를 위한 자갈날림판 유동특성 연구)

  • Rho, Joo-Hyun;Kim, Duck-Young;Ku, Yo-Cheon;Yun, Su-Hwan;Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.414-419
    • /
    • 2006
  • The ballast or other objects may be located on the rail road by a lump of ice, repairing operation on the track, or the strong gust due to the high speed running of the train. When a train operated in this condition, it causes serious damages to the wheel, train, and structures near the track, or the secondary ballast flying. To remove these objects safely, a ballast blower is suggested which was attached under the train. Firstly, the numerical analyses are investigated to find out the basic flow characteristics of the ballast blower. Next, the performance of the ballast blower is verified by wind tunnel experiments. Through these studies, it is expected that the ballast blower can be applied practically.

  • PDF

Obstacle Avoidance System for Autonomous CTVs in Offshore Wind Farms Based on Deep Reinforcement Learning (심층 강화학습 기반 자율운항 CTV의 해상풍력발전단지 내 장애물 회피 시스템)

  • Jingyun Kim;Haemyung Chon;Jackyou Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • Crew Transfer Vessels (CTVs) are primarily used for the maintenance of offshore wind farms. Despite being manually operated by professional captains and crew, collisions with other ships and marine structures still occur. To prevent this, the introduction of autonomous navigation systems to CTVs is necessary. In this study, research on the obstacle avoidance system of the autonomous navigation system for CTVs was conducted. In particular, research on obstacle avoidance simulation for CTVs using deep reinforcement learning was carried out, taking into account the currents and wind loads in offshore wind farms. For this purpose, 3 degrees of freedom ship maneuvering modeling for CTVs considering the currents and wind loads in offshore wind farms was performed, and a simulation environment for offshore wind farms was implemented to train and test the deep reinforcement learning agent. Specifically, this study conducted research on obstacle avoidance maneuvers using MATD3 within deep reinforcement learning, and as a result, it was confirmed that the model, which underwent training over 10,000 episodes, could successfully avoid both static and moving obstacles. This confirms the conclusion that the application of the methods proposed in this study can successfully facilitate obstacle avoidance for autonomous navigation CTVs within offshore wind farms.

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF