• Title/Summary/Keyword: Traffic_flow

Search Result 1,381, Processing Time 0.026 seconds

Traffic Management Technique Using Traffic Classifier in Network Virtualization Environment (네트워크 기능 가상화 환경에서 트래픽 분류기를 이용한 트래픽 관리 기법)

  • Shin, Sang-Min;Kwon, Gu-In
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.322-323
    • /
    • 2017
  • 본 논문은 대규모 트래픽을 처리하는 NFV환경의 서비스 기능 체이닝 영역에서 sFlow 기반의 트래픽 분류기를 이용한 트래픽 관리 기법을 제안하고 있다. sFlow의 실시간 트래픽 샘플링을 사용하여 실시간으로 변화하는 트래픽의 효과적인 관리를 기대할 수 있으며, 제안한 트래픽 관리 기법은 대규모 트래픽의 네트워크 안정성과 보안을 향상시킨다.

  • PDF

Analysis of traffic volume for control during an existing tunnel enlargement (발파에 의한 터널확대 굴착 시 교통처리를 위한 교통량 분석)

  • Kim, Woong-Ku;Baek, Ki-Hyun;Seo, Kyoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1328-1332
    • /
    • 2010
  • The enlargement of existing tunnels is required to cope with problems related to traffic congestion. Sometimes, the tunnel traffic must be maintained through existing tunnels during their reconstruction due to non-availability of detours. And excavation by drill and blasting is desired for widening a hard rock tunnel. In this case, the road must be closed for some period for blasting through analyzing of traffic volume. In this paper, a case study on some traffic countermeasures for tunnel enlargement by blasting was performed. And the traffic flow characteristics of some tunnels in domestic main city were analyzed.

  • PDF

A Microscopic Analysis on the Fundamental Diagram and Driver Behavior (교통기본도와 운전자 행태에 대한 미시적 분석)

  • Kim, Taewan
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.183-190
    • /
    • 2012
  • PURPOSES : The fundamental diagram provides basic information necessary in the analysis of traffic flow and highway operation. When traffic flow is congested, the density-flow points in the fundamental diagram are widely scattered and move in a stochastic manner. This paper investigates the pattern of density-flow point transitions and identifies car-following behaviors underlying the density-flow transitions. METHODS : From a microscopic analysis of 722 fundamental diagrams of NGSIM data, a total of 20 transition patterns of fundamental diagrams are identified. Prominent features of the transition patterns are explained by the behavior of the leader and follower. RESULTS : It is found out that the average speed and the speed difference between the leader and the follower critically determine the density-flow transition pattern. The density-flow path is very sensitive to the values of vehicle speed and spacing especially at low speed and high density such that most fluctuations in the fundamental diagram in the congested regime is due to the noise of speed and spacing variations. CONCLUSIONS : The result of this study suggests that the average speed, the speed difference between the leader and the follower, and the random variations of speed and spacing are dominant factors that explain the transition patterns of a fundamental diagram.

A Statistical Analysis of the Characteristics of Traffic Flow on the Road (도로교통류(道路交通流) 특성(特性)에 관한 통계해석(統計解析))

  • Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.145-159
    • /
    • 1985
  • An understanding of interrelationships among basic characteristics of vehicular traffic flow, such as volum, speed, headtime, and density, is of prime importance. Similarly in providing proper level of servicebility in the field of base of design and traffic control, it is deeply connected. After all, with a view to improve traffic flow characteristics, future efforts about the mutual function development between rod and traffic should be made on the basis of present traffic characteristics. This paper figures out some traffic characteristics from field data and provides proper model of equation to estimate traffic volume on the road.

  • PDF

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

A Study on Traffic Data Collection and Analysis for Uninterrupted Flow using Drones (드론을 활용한 연속류 교통정보 수집·분석에 관한 연구)

  • Seo, Sung-Hyuk;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.144-152
    • /
    • 2018
  • This study focuses on collecting traffic data using drones to compensate for limitation of the data collected by the existing traffic data collection devices. Feasibility analysis was performed to verify the traffic data extracted from drone videos and optimal methodology for extracting data was established through analysis of various data reduction scenarios. It was found from this study that drones are very economical traffic data collection devices and have strength of determining the level-of-service(LOS) for uninterrupted flow condition in a very simple and intuitive way.

Development of More Realistic Overtaking Behavior Model in CA-Based Two-Lane Highway Environment (CA 2차로 도로 차량모형의 보다 현실적인 추월행태 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2473-2481
    • /
    • 2013
  • The two characteristics of two-lane-and-two-way traffic flow are platoon and overtaking triggered by low-speed vehicle. It is crucial to develop a robust model which simultaneously generates the behaviors of platoon by low-speed vehicle and overtaking using opposite lane. Hence, a microscopic two-lane and two-way vehicle model was introduced (B. Yoon, 2011), which is based on CA (Cellular Automata) which is one of discrete time-space models, in Korea. While the model very reasonably explains the behaviour of overtaking low-speed vehicle in stable traffic flow below critical density, it has shortcomings to the overtaking process in unstable traffic flow above the critical density. Therefore, the objective of this study is to develope a vehicle model to more realistically explain overtaking process in unstable traffic flow state based on the model developed in the previous study. The experimental results revealed that the car-following model robustly generates the various macroscopic relationships of traffic flow generating stop-and-go traffic flow and the overtaking model reasonably explains the behaviors of overtaking under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking in unstable traffic flow state. The vehicle model presented in this study can be expected to be utilized for the analysis of two-lane-and-two-way traffic flows more realistically than before.

Flow Assignment and Packet Scheduling for Multipath Routing

  • Leung, Ka-Cheong;Victor O. K. Li
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.230-239
    • /
    • 2003
  • In this paper, we propose a framework to study how to route packets efficiently in multipath communication networks. Two traffic congestion control techniques, namely, flow assignment and packet scheduling, have been investigated. The flow assignment mechanism defines an optimal splitting of data traffic on multiple disjoint paths. The resequencing delay and the usage of the resequencing buffer can be reduced significantly by properly scheduling the sending order of all packets, say, according to their expected arrival times at the destination. To illustrate our model, and without loss of generality, Gaussian distributed end-to-end path delays are used. Our analytical results show that the techniques are very effective in reducing the average end-to-end path delay, the average packet resequencing delay, and the average resequencing buffer occupancy for various path configurations. These promising results can form a basis for designing future adaptive multipath protocols.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

The Ramp Metering System Construction of Urban Freeway by the Intelligent Transportation System (ITS) Technology (첨단교통체계(ITS)에 의한 도시고속도록의 Ramp Metering 시스템 구축에 관한 연구)

  • 김태곤
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • Today freeway is thought to be a very important transportation facility carrying tremendous traffic flow as the main corridor within the area of between the areas. However freeway is experiencing severe congestion and accidents by increased entrance ramp flow especially at peak time period. Ramp meters on the freeway entrance ramps that supply traffic to the freeway in a measured or appropriately regulated amount are needed for alleviating freeway congestion. Because ramp meters can be operated to discharge traffic at a measured or regulated rate thus maintaining more uniform speed on the mainline section maximizing the throughput to the freeway within the capacity of a downstream bottleneck and reducing the congestion related accidents. Thus the objectives in this study were to analyze the traffic characteristics on the freeway I-94 with ramp metering system before/after ITS technology in Detroit (Michigan) area compare shifts of the traffic characteristics on the freeway I-94 before/after ITS technology and finally suggest a better ramp metering strategy for the freeway system The following results were obtained: i)Flow occupancies and speeds on the mainline merge section of freeway were shown to be a big difference depending on the peak periods areas and directions based on the distribution of traffic flow characteristics on the freeway. ii)Reduced speed was shown to be more than 5 mph and ramp flow was also shown to be more than 240 vph at peak periods if there was the ramp metering system constructed on the freeway. iii)Ramp metering system was shown to be optimally operated on the freeway if ramp flow could be maximized within the range of over 900 vph and reduced occupancy could be also maximized by no more than 2 percent at peak periods. iv)The average flows on the freeway after the ITS technology were shown to be a decrease of over 20% depending on the peak periods areas and directions when compared with those flow on the freeway before the ITS technology. over 20% depending on the peak periods areas and directions when compared with those speeds on the freeway before the ITS technology. vi)The average metering rates on the freeway after the ITS technology were shown to be an increase of over 10% depending on the peak periods areas and directions when compared with those metering rates on the freeway before the ITS technology.

  • PDF