• Title/Summary/Keyword: Traffic signal

Search Result 995, Processing Time 0.03 seconds

The Implementation on the Traffic Signal Control Equipment of Intelligence Type Using the PLC (PLC를 사용한 지능형 교통 신호 제어 설비 구현)

  • 김태성;위성동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.74-81
    • /
    • 1998
  • It is not good joint that today's traffic control system that the course of traffic volume increase tendency is followed, in the traffic volume is approched into the time of my car. Accordingly when we analyzed the existing traffic signal control system, the traffic signal system is developed from the machine type that the motor was centered, to get up to date, to the intelligence electron signal control system. But yet, when we have a test and a A/S on the control circuit, the circuit that is designed to the center IC and ROM are complicated. Also, the time of pass lamp that the car line stream is going, can not extended automatically a time till the traffic volume is decreased to the same direction. This theme must be a real time intelligence control system that the time of pass lamp can extend aumatically. The circuit of sequence ladder diagram on the traffic signal control of a crossroads that is desinged, can be satisfied the complicated vehicle order. Therefore when the circuit is changed, the new developed system is economical with that dosen't needs any of components to require the circuit equipment, and the time is saved with needlessness of the circuit wiring again, and have a much trustworthy. The control method of pass signal lamp in the car line stream connecting among PLC and Relay and Temp Sensor, can be changed to hand operation and to semi-automation and to all-automation. New intelligence traffic signal system is composed with all-together system of T Sensor + Video Camera + IBM PC that is able to guiding the establishment of traffic order.

  • PDF

A Study on the Optimal Signal Timing for Area Traffic Control (지역 교통망 관리를 위한 최적 신호순서에 관한 연구)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.69-80
    • /
    • 1999
  • A genetic algorithm to determine the optimal signal sequence and double cycle pattern is described. The signal sequence and double cycle pattern are used as the input for TRANSYT to find optimal signal timing at each junction in the area traffic networks, In the genetic process, the partially matched crossover and simple crossover operators are used for evolution of signal sequence and double cycle pattern respectively. A special conversion algorithm is devised to convert the signal sequence into the link-stage assignment for TRANSYT. Results from tests using data from an area traffic network in Leicester region R are given.

  • PDF

Development of Traffic Signal Operation Strategies On Median Bus Lane (중앙버스전용차로제 실시에 따른 신호운영 방안 연구)

  • Kim Gyun-Jo;Kim Young-Chan;Kim Jin-Tae;Jung Kwang-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.21-30
    • /
    • 2006
  • For urban highway network, traffic control strategy paradigm has been shifted from the private auto-oriented to the public transit-oriented. Introduction of exclusive median bus lanes (EMBL) in Seoul, Korea, has especially accelerated such changes in transportation policy and thus highway environment. Left-turning movement treatment at signalized intersections where EMBL pass through has been emerged as one of the rising problems associated with a current signal head with 4-signal lens, the Korea standard. This study proposes a new signal phase operation scheme for signal operation at an isolated intersection where EMBL pass through. The authors propose to use of an exclusive bus signal head indicating right-of-way of transits on EMBL only. Based on it, three different phase operation scheme were developed for left-turn treatments for traffic control with (1) traffic responsive control mode and (2) time-of-day traffic control mode. In addition, methodologies to design and develop signal maps for the proposed signal phase schemes are also developed. The proposed operation can only be possible when additional uses of signal state relay boards are allowed.

  • PDF

A Comparison Study of Driver's Responsive Action by Using the Traffic Light Change Anticipation (교통 예비점멸등 사용에 따른 운전자 행동반응 비교)

  • Chang, Myung-Soon;Kim, Young-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2003
  • This study preformed a research about the traffic signal light that is adding supplementary green light to prevent driver's cognitive errors and plan safe driving through improving visual cognitivity of present traffic signal light. The result of comparing the present traffic signal light(three colors, four colors) with the traffic signal light(three colors, four colors) adding supplementary green light through car simulator has a significant difference. This result shows possibility that the traffic signal light adding supplementary green light can contribute in safety driving at a point that the traffic signal light advances a point of braking time when drivers didn't recognize by themselves. The findings in this study ca say that there is the meaning in showing a actual application possibility of this study finding by investigating a action of subjective response the moment compare driver's actual response.

Study on the Operational Effect of Real-time Traffic Signal Control Using the Data from Smart Instersections (스마트교차로 데이터를 활용한 실시간 교통신호제어 운영 효과 분석)

  • Sangwook Lee;Bobae Jeon;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.48-62
    • /
    • 2023
  • Recently, smart intersections have been installed in many intelligent transportation system projects, but few cases use them for traffic signal operations besides traffic volume collection and statistical analysis. In order to respond to chronic traffic congestion, it is necessary to implement efficient signal operations using data collected from smart intersections. Therefore, this study establishes a procedure for operating a real-time traffic signal control algorithm using smart intersection data for efficient traffic signal operations and improving the existing algorithm. Effect analysis confirmed that intersection delays are reduced and the section speed improves when the offset is adjusted.

Characteristics of the Required Signal Power for Multimedia Traffic in CDMA Systems (CDMA 이동통신시스템에서 멀티미디어 트래픽의 요구 신호 전력 특성)

  • 강창순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.593-600
    • /
    • 2002
  • The reverse link signal power required for multimedia traffic in multipath faded single-code (SC-) and multi-code CDMA (MC-CDMA) systems is investigated. The effect of orthogonality loss among multiple spreading code channels is herein characterized by the orthogonality factor. The required signal power in both the CDMA systems is then analyzed in terms of the relative required signal power ratio of data to voice traffic. The effect of varying system parameters including spreading bandwidth, the of orthogonality factor, and the number of spreading codes are examined. Analytical results show that MC-CDMA users transmitting only a single traffic type require significantly more power than SC-CDMA users with only a single traffic type. On the other hand, MC-CDMA users transmitting multimedia traffic require power levels approximately identical to SC-CDMA users with multimedia traffic. The results can be used in the design of radio resource management (e.g., power allocation) scheme for wireless multimedia services.

Intelligent Traffic Light using Fuzzy Neural Network

  • Park, Myeong-Bok;You-Sik, Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Today, with increasing traffic and congested roads, the conventional traffic light creates startup-delay time and end lag time so that thirty to forty-five percent efficiency in traffic handling is lost, as well as adding to fuel costs. To solve this problem, this paper proposes a new concept of optimal green time algorithm, which reduces average vehicle waiting time while improving average vehicle speed using fuzzy rules and neural networks. Through computer simulation, this method has been proven to be much more efficient than fixed time interval signals. Fuzzy Neural Network will consistanly improve average waiting time, vehicle speed, and fuel consumption.

Development of a Microscopic Traffic Simulator for Evaluating Signal Operating Strategy of Traffic Adaptive Control System (첨단신호시스템의 신호제어전략 평가를 위한 미시적 시뮬레이터의 개발)

  • 이영인;한동희
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Many cities, recently, have convertedoptimized fixed-time control to adaptive traffic system in the control of their signalized traffic network. The expected benefit from the adaptive traffic system is its ability to constantly modify signal timing to most effectively accommodate changed traffic conditions. While the potential benefits from this control structure may be significant, few studies have compared the effect of implementing this method of signal control against other alternative signal control strategies, because it is too difficult to evaluate the efficiency of the real-time adaptive system. The objectives of this research are : to develop a microscopic simulator and to compare the effect at isolated intersections, corridors, and networks between the fixed signal timing plan and adaptive traffic signal system. This simulator will have allowed more sophisticated analysis techniques for the study of traffic control. Also, this research using this simulator evaluated a real-time traffic responsive signal system used in Seoul Korea

Traffic Signal Control using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.19-24
    • /
    • 2010
  • The number of automobiles are continuously increasing in Korea since 1990's and it causes frustrating commuting traffic and holyday traffic. Meanwhile, the obsolete traffic signal control system is still under static control based on the aggregated traffic statistics thus it is not sufficiently adaptive in real world traffic situation that changes in real time. Thus, in this paper, we propose an adaptive signal control system using fuzzy control technology that can react to real time traffic situations. The method computes the priority of signal phases based on the number of waiting automobiles and occupying time on intersection using fuzzy membership functions. The phase with highest priority obtains "proceed" signal. Also, the duration of this "proceed" signal is determined based on the ratio of number of waiting automobiles of given phase and total number of waiting automobiles on intersection. In experiment, we show that the proposed fuzzy control system is better than the static control system for all sorts of traffic congestion situations by simulation.

Optimum signal setting based on phase sequence and interval in an isolated intersection (교통신호의 페이스순서 및 페이스간격을 고려한 신호최적화)

  • 김경철;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.45-58
    • /
    • 1996
  • In a large signal intersection, it is the most important to set phase sequences and phase intervals of traffic signal in order to improve the efficiency of the capacity as well as safety. These setting allows to select the best sequence of signal phase among several alternatives, and thus to rearrange the starting and ending points of the individual phase using an effective interphase periods (EIP). The EIP is a gap between previous and current traffic movements at a potential collision point in an intersection. Each of traffic movements has an equality for safety and efficiency at the balanced condition of EIP. This paper presents how to set optimally the phase sequences and intervals of traffic signal in an intersection using phase based approach. And in the second part, we applied the theory developed in the first part. In particular, a numerical example of phase base signal setting is presented using a matrix computation method in order to select the best sequence among several alternatives, and thus to rearrange the starting and ending points of the individual phase using the EIP. This method also allows to apply to optimum signal setting even in five-lag or staggered-type intersection.

  • PDF