Journal of the Korean Institute of Intelligent Systems
/
v.13
no.6
/
pp.722-728
/
2003
In this paper, we propose a fuzzy traffic controller of Sugeno`s fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It use a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. First, in order to construct fuzzy traffic controller of Sugeno`s fuzzy model, we model the control process of the traffic light by using Mamdani`s fuzzy model, which has the uniform membership functions of the same size and shape. Second, we make Mamdani`s fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Last, we construct the fuzzy traffic controller of Sugeno`s fuzzy model by learning from the input/output data, which is retrieved from Mamdani`s fuzzy model with the non-uniform membership functions. We compared and analyzed the fixed traffic light controller, the fuzzy traffic controller of Mamdani`s fuzzy model and the fuzzy traffic controller of Sugeno`s fuzzy model by using the delay time and the proportion of the entered vehicles to the occurred vehicles. As a result of comparison, the fuzzy traffic controller of Sugeno`s fuzzy model showed the best performance.
In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.
For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.
The objective of this research is to develop a traffic accident forecasting model using traffic accident data in pusan from 1963 to 1991 and then to make short-term forecasts('93~'94) of traffic accidents in pusan. In this research, several forecasting models are developed. They include a multiple regression model, a time-series ARIMA model, a Logistic curve model, and a Gompertz curve model. Among them, the model which shows the most significance in forecasting accuracy is selected as the traffic accident forecasting model. The results of this research are as followings. 1. The existing model such as Smeed model which was developed for foreign countries shows only 47.8% explanation for traffic accident deaths in Korea. 2. A nonliner regression model ($R^2$=0.9432) and a Logistic curve model are appeared to be th gest forecasting models for the number of traffic accidents, and a Logistic curve model shows th most significance in predicting the accident deaths and injuries. 3. The forecasting figures of the traffic accidents in pusan are as followings: . In 1993, 31, 180 accidents are predicted to happen, and 430 persons are predicted to be deaths and 29, 680 persons are predicated to be injuries. . In 1994, 33, 710 accidents are predicted to happen, and 431.persons are predicted to be deat! and 30, 510 persons are predicted to be injuried. Therefore, preventive measures against traffic accidents are certainly required.
Kim, Young-Sik;Lee, Jae-Hoon;Park, Wan-Kyoo;Lee, Sung-Joo
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.664-667
/
2003
We propose a frizzy traffic controller of Sugeno's fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It uses a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. In order to construct fuzzy traffic controller of Sugeno's fuzzy model we first model the control process of the traffic light by using Mamdani's fuzzy model, which has the uniform membership functions of the same size and shape. Next we make Mamdani's fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Lastly, we construct the fuzzy traffic controller of Sugeno's fuzzy model by learning from the input/output data, which is retrieved from Mamdani's fuzzy model with the non-uniform membership functions. We compared and analyzed the service level of the traffic light controllers by using the delay time. As a result of comparison, the fuzzy traffic controller of Sugeno's fuzzy model shows the best service level of them.
The linear traffic model(Vertical queueing model) that is adopted widely in traffic flow estimation assumes that all vehicles have the identical motion before joining a queue at the stop-line. Thus, a queue is supposed to form vertically not horizontally. Due to the simplicity of this model, the departure time of the leading vehicle is assumed to coincide with the start of effective green time. Thus, the delay estimates given by the Vertical queueing model is not always realistic. This paper explores a microscopic traffic model(a Kinematic Car-following model at Signalised intersections: a KCS traffic model) based on the one dimensional Kinematic equations in physics. A comparative evaluation in delay and sensitivity of delay difference between the KCS traffic model and the previously known Vertical queueing model is presented. The results show that the delay estimate in the Vertical queueing model is always greater than or equal to the KCS traffic model; however, the sensitivity of delay in the KCS traffic model is greater than the Vertical queueing model.
PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.
International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.48-54
/
2023
Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.
PURPOSES: Used in transportation planning and traffic engineering, almost traffic simulation tools have input variable values optimized by overseas traffic flow attribution because they are almost developed in overseas country. Thus, model calibration appropriated for internal traffic flow attribution is needed to improve reliability of simulation method. METHODS : In this study, the traffic flow model calibration is based on expressways. For model calibration, it needs to define each expressway link according to attribution, thus it is classified by design speed, geometric conditions and number of lanes. And modified greenshield model is used as traffic flow model. RESULTS : The result of the traffic model calibration indicates that internal congested density is lower than overseas. And the result of analysis according to the link attribution indicates that the more design speed and number of lanes increase, the lower the minimum speed, the higher the congested density. CONCLUSIONS: In the traffic simulation tool developed in overseas, the traffic flow is different as design speed and number of lanes, but road segment don't affect traffic flow. Therefore, these results need to apply reasonably to internal traffic simulation method.
Traffic Accident Merging Index(TAMI) is developed for TMACS(Traffic Safety Information Management Complex System). TAMI is calculated by combining 'Severity Index' and 'Frequency'. This paper suggest the accurate TAMI prediction model by time series forecasting. Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. Searches the model which minimizes the error of 230 local self-governing groups. TAMI of 2007~2009 years data predicts TAMI of 2010. And TAMI of 2010 compares an actual index and a prediction index. And the error is minimized the constant where selects. Exponential Smoothing model was selected. And smoothing constant was decided with 0.59. TAMI Forecasting model provides traffic next year safety information of the local government.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.