The aim of this paper is to simply present live load factor calculation methodology formulation with the addition of a simple new future load projection procedure to previously proposed two methods. For this purpose, Oregon Weigh-in-Motion (WIM) data were used to calculate live load factors by using WIM data. These factors were calculated with two different approaches and by presenting new simple modifications in these methods. A very simple future load projection method is presented in this paper. Using four different WIM sites with different average daily truck traffic (ADTT) volume, and all year data, live load factors were obtained. The live load factors, were proposed as a function of ADTT. ADTT values of these sites correspond to three different levels which are approximately ADTT= 5,000, ADTT = 1,500 and ADTT ≤ 500 cases. WIM data for a full year were used from each site in the calibration procedure. Load effects were projected into the future for the different span lengths considering five-year evaluation period and seventy-five-years design life. The live load factor for ADTT=5,000, AASHTO HS20 loading case and five-year evaluation period was obtained as 1.8. In the second approach, the methodology established in the Manual for Bridge Evaluation (MBE) was used to calibrate the live load factors. It was obtained that the calculated live load factors were smaller than those in the MBE specifications, and smaller than those used in the initial calibration which did not convert to the gross vehicle weight (GVW) into truck type 3S2 defined by AASHTO equivalents.
Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.
검지기 자료의 품질은 동일한 교통 조건이라도 검지기의 종류, 보정 및 유지 보수의 노력, 도로의 기하구조 등에 의해 내재적으로 10% 이상 변수 값 차이를 보일 수 있다. 이러한 내재적인 변수 값 차이로 인해 성능이 검증된 돌발상황 자동감지알고리즘을 사용하더라도 검지율(DR)이 낮아지고 오보율(FAR)이 높아지는 문제가 야기될 수 있다. 본 연구는 교통특성 변수의 간단한 산술계산기법(SAO)를 활용하여 새로운 AIDA를 개발하는데 목적이 있다. SAO는 내재적으로 존재하는 변수 값 차이를 보정하여 AIDA의 성능 저하를 극복하기 위해 개발되었다. AIDA 모형의 개발 및 검증을 위해 내부순환도로와 경부고속도로에서 수집된 30초 단위의 점유율을 사용하였다. SAO 기반 알고리즘 분석 결과 100% 돌발상황을 검지하는 높은 검지율을 보였고, 검지시간(MTTD)은 1분 이내로 나타났다. 오보율의 경우 본 연구에서 개발된 SAO 기반 AIDA의 오보율이 기개발된 AIDA의 오보율보다 3.5%~31.0% 감소하는 것을 확인하였다. SAO 기반의 알고리즘은 돌발상황의 지속성 분석에서도 탁월한 능력을 보였다.
ALINEA는 램프의 하류부에 설치된 검지기를 이용하여 최적의 차량점유율 상태를 유지하도록 유입램프의 교통량을 조절하는 방안으로 검지기를 이용한 차량의 점유율을 제어 변수로 이용하고 있다. 하지만, 현재 가장 널리 사용되고 있는 루프제어기 점유율의 정확도가 비교적 낮다는 점과 점유율은 검지기 길이의 함수로서 ALINEA의 적용 시 설치 지점마다, 그리고 검지기 길이마다 최적 점유율 보정과정이 필요한 점을 감안할 때 현재 사용 중인 ALINEA를 보완할 필요가 있다. 관리자와 이용자 측면에서 점유율이 사실상 인지하기 어려운 변수임을 감안할 때 쉽고 간편한 변수의 사용을 통한 모형개발이 의미를 가질 수 있을 것이다. 본 연구에서는 ALINEA 알고리즘의 기본 개념을 이용하되 제어변수인 점유율을 이용할 때의 불편한 점 및 단점을 일부 개선시킬 수 있는 속도 변수를 이용하여 ALINEA 모델을 보완하고자 한다.
Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.
교량의 피로파괴에 대한 Miner의 피로손상법칙을 적용하여 여러 확률변수로 표현된 피로파괴 한계상태함수에 대한 신뢰도해석을 국내에서 측정된 통행차량의 통계적 특성을 반영하여 수행하였다. 신뢰도지수의 산정에 필요한 확률변수 가운데 등가모멘트, 충격계수비, 등가하중비는 국내의 최근 측정자료를 분석하여 통계치를 산정하였으며, 피로강도, 활하중 횡분배비, 연행하중비는 국외에서 측정된 문헌자료의 통계치를 적용하였다. 신뢰도해석을 통하여 피로설계트럭의 종류, 교량수명, ADTT, 피로상세, 등가하중비, 피로설계트럭의 총중량 등의 피로손상에 관련된 여러 파라미터가 신뢰도지수에 미치는 영향을 분석하였다. 본 논문의 피로파괴에 대한 신뢰도해석 결과는 국내 LRFD 설계기준의 피로설계트럭모형과 피로한계상태의 하중계수를 결정할 때 기초 자료로 이용할 수 있을 것으로 판단된다.
교통 혼잡이 증가하면서, 경로에 대한 교통정보, 특히 실시간 구간통행시간에 대한 사람들의 관심이 증대되고 있다. 본 논문은 GPS Probe를 통해 구간통행시간을 산출했던 최기주(1998) 등의 후속 연구로써, 도시부에서 구간 통행시간을 산출하기 위해 택시를 GPS Probe로 활용하였다. 택시는 GPS Probe로 활용되기 위한 매우 좋은 수단이지만, 승객의 승하차시간 등 주행과 관계없는 불필요한 데이터가 포함되게 된다. 따라서 본 논문에서는 도시부에서 Taxi GPS를 통해 교통정보를 생성할 경우 주행과 관계없는 정보를 실시간으로 검지하여 제거하는 휴리스틱한 이상치 제거 알고리즘을 개발하였다. 평가를 위해 서울시 주요 간선축에서 번호판 조사를 실시하였으며 알고리즘을 적용한 통행시간과 비교하였다. 이상치 제거 알고리즘을 적용한 결과, 약 70%의 이상치가 제거되었으며, 실측 통행시간과의 상대 오차가 73.7%로 향상된 것으로 나타났다. 따라서 본 알고리즘을 이용할 경우 Taxi GPS를 통해 신뢰할 수 있는 실시간 교통정보를 생성할 수 있을 것으로 판단된다.
The metadata for urban meteorological observation is standardized through comparison with those established at the World Meteorological Organization and the Korea Meteorological Administration to understand the surrounding environment around the sites exactly and maintain the networks and sites efficiently. It categorizes into metadata for an observational network and observational sites. The latter is again divided into the metadata for station general information, local scale information, micro scale information, and visual information in order to explain urban environment in detail. The metadata also contains the static information such as urban structure, surface cover, metabolism, communication, building density, roof type, moisture/heat sources, and traffic as well as the update information on the environment change, maintenance, replacement, and/or calibration of sensors. The standardized metadata for urban meteorological observation is applied to the Weather Information Service Engine (WISE) integrated meteorological sensor network and sites installed at Incheon area. It will be very useful for site manager as well as researchers in fields of urban meteorology, radiation, surface energy balance, anthropogenic heat, turbulence, heat storage, and boundary layer processes.
Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.73-83
/
2013
신용평가방법에서 등급의 계량화 중 신용등급 변화 검정방법은 등급별로 추정된 예측부도율과 실제부도율과의 동질성을 검정하는 방법으로 한 시점에 대한 이항검정과 카이제곱검정 등이 있고, 여러시점의 정확성을 검증하는 방법으로 정규성검정, 확장된 신호등검정 등이 있다. 본 연구에서는 현실적인 상황을 고려하여 이런 검정방법들이 상관관계가 존재하는 경우에 등급별 동질성 검정방법을 소개하고 이 방법들을 신용평가 이외에 다양한 분야의 자료에 활용할 수 있음을 알아본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.