• Title/Summary/Keyword: Traffic Volume Level

Search Result 192, Processing Time 0.024 seconds

A Study on the Noise Correction Factor in Apartment Complex (공동주택에서의 소음보정계수에 관한 연구)

  • Lee, Nae Hyun;Sunwoo, Young;Park, Young Min;Park, Sun Hwan;Cho, Il-Hyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.247-254
    • /
    • 2005
  • Road traffic noise has increasing broader effects on urban areas as well as rural areas because of rapidly increasing traffic volume and newly-constructed roads. 10 sites in building development areas were selected and the noise level were measured by the apartment floors and by the various block plans of apartment complex. Analysis result, about correction factor, in the case of right angle arrangement, apply - 2.5dB(A). In the case of apartment house correlation of each floor apply 1st floors 0dB(A), 2st floors 1.2dB(A), 3st floors 2.1dB(A), 4st floors 2.6dB(A), 5st floors 2.7dB(A), 6st floors 2.7dB(A), 7st floors 2.4dB(A), 8st floors 2.0dB(A), 9st floors 1.6dB(A), 10st floors 1.1dB(A), 13st floors 0.2dB(A), 15st floors 0.5dB(A). The level of road traffic noise in the arrangement construction of right angle was about 3.0dB(A) at N-4 point and 2.1dB(A) at N-6 point lower than that of a plan figure, respectively. The results suggested that application of correction coefficient obtained by the apartment floor and by the arrangement construction can be improved in road traffic noise. The results suggested that application of correction coefficient obtained by the apartment floor and by the arrangement construction can be improved in road traffic noise.

A Study on Optimum Control of Marine Traffic -In the Domain of Control Sector- (해상 교통량의 효율적 관리 방안에 관하여 -(1) 교통 관제 해역의 경우-)

  • 윤명오;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.39-47
    • /
    • 1991
  • As per the rapid development of world economics the marine traffic volume was increased accordingly and caused frequent disasters in human lives and natural environment in the consequence of accidents. As the result of the above they started to establish Vessel Traffic System(VTS) and separation scheme in waterway from 1960' to prevent the marin traffic accident but the problem of safety at sea appears now as neither fully defined nor sufficiently analysed. At the present, the dominant factor in establishing the strategy of marine traffic has been safety of navigation concerning only with the ship, but the risk of society derives almost wholly from the nature of cargo. To measure the degree of danger for each ship there is suggested concept of safety factor numbers denoting the level of latent danger in connection with ship and her cargo. In this paper, where the strategy of VTS is put on controlling density of safety factor for control area. it suggested algorithms how to assign the vessels and also to get optimal sequence of vessels located to a sector in the sense of minimizing the passage delay. For the formulation of problem, min max and 0-1 programming methods are applied and developed heuristic algorithm is presented with numerical example to improve the efficiency of calculation.

  • PDF

Excess Noise Map for Environmental Standard and Assessment of Noise with Using GIS Data (GIS 자료를 이용한 초과소음지도 작성과 소음 평가)

  • Ko, Joon-Hee;Lee, Byung-Chan;Lim, Jae-Serk;Park, Su-Jin;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1075-1082
    • /
    • 2009
  • Using GIS data of C-si as basic data when making noise map of road traffic, we estimated exactly the noise excess areas and consequently suggested the population and the area exposed to road traffic noise accurately. We made 3D noise map to assess regional distribution of noise quantitatively. The noise map consists of noise prediction model based on data base such as traffic volume and speed changes for estimating quantitatively the noise and 3D urban space model which includes locations of noise sources, 3D buildings, topography and roads. We made noise standard map according to land use conditions and compared this map to road traffic noise map, and consequently made excess noise map. Using excess noise map, we assessed areas which exceed environmental noise level standards and noise guidelines quantitatively and effectively through GIS spatial analysis, and consequently more accurate noise exposed area and noise exposed population could be estimated. To show buildings' outer walls noise exposure, we analyzed 3D urban noise distributions using 3D-analysis of GIS.

Distribution of $NO_{x}$ and CO among the Ambient air by traffic volume characteristics and distance from roadside (The Sungnam City Case) (교통량특성과 거리에 따른 대기 오염물질 분포에 관한 연구(성남시의 $NO_{x}$, Co를 중심으로))

  • 권우택;김형철
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.41-49
    • /
    • 1997
  • In South Korea since 1970s the rapid development of economic growth has brought about "Urbanization" in many areas and also raised the level of people's life in many ways. At the same time, however, the industrialization and overpopulated districts in many areas have caused the problems of air pollution in necessary. Among those air pollution, in particular, in large cities has become more serious since 1990s than before. Air pollution, like TSP and SO$_{x}$ caused by heating, generation of electric power and industrialization in 1980s, showed as that of the type of an underdeveloping country and was not hazardous enough to people in the least. Unfortunately, in 1990s NO$_{x}$, CO and O$_{3}$ caused by the soaring numbers of many types of cars have exhausted air pollutant more hazardous as the same air pollution type of many developed countries. So, the purpose of this study would be to analyze the changes of concentration of NO$_{x}$ and CO on environmental air by traffic volume and from the side drive way to the degree of distance in Sungnam City, and recognize the citizens' consciousness to air pollution and suggest the best walking point in part, and plan to design the reasonable use of cars and finally make the air quality improve toward the better-ment in part. From the research result we can know that people walking in the street would be protected from the hazardous air pollutant caused by the cats if they walk apart from a drive way as far as they can in the street. Accordingly, it might, to minimize th affect of air pollution, be thought to be desirable that the consideration of in introduction the system that the vehicle using the diesel engine motor should use the centered-lane aparted from road. Another to be desirable is that along side the road, the trees inhaled the pollution should be planted.

  • PDF

Feasibility Evaluation of Lane Grouping Methods for Signalized Intersection Performance Index Analysis in KHCM (도로용량편람 신호교차로 성능지표 분석을 위한 차로군 분류의 적정성 평가)

  • Kim, Sang-Gu;Yun, Ilsoo;Oh, Young-Tae;Ahn, Hyun-Kyung;Kwon, Ken-An;Hong, Doo-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • The level of service (LOS) of the Highway Capacity Manual (KHCM) has been used as a basic criterion at decision making processes for signalized intersections in Korea. The KHCM provides five steps for the signalized intersection analysis. Among them, lane grouping, which is the third step, significantly influence the final LOS. The current method presented in the KHCM, however, classifies a shared lane as a de facto turning lane group, even though the turning traffic of the shared lane is few. Thus, this research was initiated to provide an alternative. To this end, three alternatives were suggested, including the method based on the lane grouping presented in the U.S. Highway Capacity Manual, the method using turning ratio of shared turning lane, and the method using a threshold traffic volume in lane grouping. The feasibilities of the three methods were evaluated using a calibrated CORSIM model. Conclusively, the method using a threshold traffic volume in lane grouping outperformed.

A Study on the Expansion of Low Emission Zone in Green Transport Zone and Seoul Metropolitan Government Using Origin-Destination Traffic Volume (O/D 데이터를 활용한 녹색교통지역 및 서울시 자동차 운행제한 확대 연구)

  • Jeong, Jae Eun;Shon, Eui Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.90-99
    • /
    • 2020
  • The "Low Emission Zone" (LEZ) system restricts entry of vehicles with high air pollutants into city centers. Implementation of the system improves air environment around the world. Since 2012, operating restrictions have been applied to all of Seoul's metropolitan areas and some other metropolitan areas in the state. Beginning in December 2019, entry of 5th class vehicles to the central green transport zone of Seoul has been restricted. In this study we examine the status of operational restrictions in this zone, and predict the amount of traffic reduction expected when numbers of target vehicles are expanded in the future, we use data for each vehicle's emission grade: by region and 'Origin-Destination Traffic Volume'. After estimating the amount of traffic entering Seoul's 25 autonomous districts, by emission class, we propose a target region that may have a significant effect if target areas for automobile operation restrictions expand in the future.

A Study of Level of Service Criteria for Roundabouts (회전교차로의 서비스수준 기준 정립 연구)

  • Kim, Eung-Cheol;Ji, Min-Gyeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.7-16
    • /
    • 2009
  • Korea Highway Capacity Manual (2001) proposes only LOS(Level of Service) analysis method on non-control and two-way-stop intersections, not dealing with the analysis method on LOS for roundabouts, nor even including the term 'roundabout'. This study selects proper MOEs for roundabouts and criteria the LOS through simulation analysis. To attain this goal, the authors reviewed the methods to select proper MOEs in the first step, criteria the Los. For this study, the MOEs were chosen from existing literature, and used for the criteria. The MOEs to be applied to roundabouts in this research were entry traffic volume, v/c (volume/capacity) ratio, and average vehicle delays. The results showed that the maximum entry traffic volume(LOS F) at local one-lane roundabout was analyzed to be 1,700pcph and average vehicle delay 18 seconds LOS A was analyzed as 700pcph and average vehicle delay 3 seconds and v/c 0.41 in this case Maximum entry traffic volume(LOS F) at local area 2 lane roundabouts was analyzed as 2,900pcph and their average vehicle delay as 31 seconds LOS A was analyzed to be 1.500pcph and average vehicle delay 8 seconds, v/c 0.52.

Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways (고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구)

  • Jungeun Yoon;Harim Jeong;Jangho Park;Donghyo Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • In this study, the number of truck traffic accidents was predicted by using Poisson and negative binomial regression analysis to understand what factors affect accidents using expressway data. Significant variables in the truck traffic accident prediction model were continuous driving time, link length, truck traffic volume. number of bridges and number of drowsy shelters. The calculated LOSS rating was expressed on the national expressway network to diagnose the risk of truck accidents. This is expected to be used as basic data for policy establishment to reduce truck accidents on expressways.

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.

An Analysis of the Hazardous Highway Segments Using Continuous Risk Profile Method (고속도로 사고잦은 지점 분석방법 연구)

  • Lee, Soo-Il;Yu, Jun-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.180-185
    • /
    • 2010
  • We have to develop more correct and systematic way to choose Hazardous Highway Segments. In this research, we applied CRP(Continuous Risk Profile) technique which developed by UC Berkeley Traffic Safety Center in year of 2007, and can analyze yearly dangerous level tendency of continuity in the route of main road that is under California Department of Transportation(Caltrans). We changed standard of CRP to suit in Korean circumstance with consideration in radius of curve and traffic volume. For the verification by actual accident data, we embodiment the CRP by using the data from total of 587 case of accident in latest 10 years in Gyeong-Bu Highways, the amount of 56km. Finally, the effectiveness of technique in this research has been verified by obtained same result with current method for Hazardous Highway Segments. In addition, when calculating the Hazardous Highway Segments with technique that presented in this research we obtained following statements. First, identified dangerous level of continuity in the route by using CRP. Second, Accurate of Actual Hazardous Highway Segments selection has been developed by using last 10 year's data and profile making which provide simplicity analyze of Tendency. Third, after reforming the way of selection, effective range has been wider than former selection and it gives advantage for the policy side.