• Title/Summary/Keyword: Traffic Simulation Model

Search Result 729, Processing Time 0.027 seconds

Deformation mechanisms of shallow-buried pipelines during road widening: Field and numerical investigation

  • Long Chen;Chenlei Xie;Zi Ye;Yonghui Chen;Zhewei Chai;Yun Li
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.15-28
    • /
    • 2024
  • The rapid development of the economy has compelled the widen of highways, and the main challenge of this undertaking lies in the uneven settlement of road embankments. Through field and numerical experiments, this study explores the deformation mechanism of shallow buried pipelines due to road widening. The utilization of Plaxis3D software, which is adapt at simulating complex engineering geological conditions, enables the simulation of the settlement of both the central and right-side road embankments. Comparing with other numerical software such as ABAQUS and COMSOL, Plaxis provided more constitutive models including HS, HSS and Hoek-Brown model. The work concludes that the uneven settlement of road cross-sections is positively correlated with the horizontal distance from the pipeline, with a maximum settlement of 73 mm observed after construction. Furthermore, based on the Winkler's assumption, theoretical settlement and stress calculation methods are established. Results indicate that the maximum difference between the calculated values of this formula and simulated values is 1.9% and 7%, respectively. Additionally, the study investigates the stress and settlement of the pipeline's top under different angles to understand its behavior under various conditions. It finds that with traffic loads applied to the new embankment, a lever effect occurs on the lower pipeline, with the fulcrum located within the central isolation zone, leading to a transition in curve type from "single peak and single valley" to "double peak and single valley." Moreover, the settlement of pipelines on both sides of the central isolation zone and the normal stress of the pipeline's top section are symmetrical.

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges (FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안)

  • Ann, Ho June;Park, Cheol Woo;Kim, Yong Jae;Jang, Young Ik;Kong, Jung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.185-195
    • /
    • 2017
  • In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections (공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근)

  • Shin, Chi-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.269-281
    • /
    • 2018
  • Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.

Study on The Warranty of Opposing Through Flow Gap Acceptance Time for more Efficient Management of Permissive Left-Turn (비보호 좌회전 효율성 제고를 위한 대향 직진 교통류의 Gap-Time기준 연구)

  • Baik, Seung-Yup;Park, Ki-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • Since 2009 The Korean National Police Agency has been pushed "permissive left-turn" forward in order to making progress in Korean traffic operations system. Preceding researches manuals and guidelines present 6 standards(# of accidents # of lanes, pedestrian volume sight # of permissive left-turn lanes vehicle volume) as installation permissive left-turn. But in practical affairs it is most important that secure enough Gap-time between permissive left-turn vehicle and opposite through lane vehicle to make permissive left-turn vehicle move safer and more efficiently. This study suggests applying gap acceptance theory in microscopic model to permissive left-turn installation standards. Analysis methods of this study are field data survey statistical analysis and microscopic simulation analysis. This study collected field data by using AVI recording and measured permissive left-turn vehicle intersection passing time(T1) and against the opposite through lane vehicle Gap-time(T2). And statistical analysis performed about two values that measured before to predict the functionality between T1 and T2. These studies to overcome the limit of sample size carried out a microscopic simulation(VISSIM) plan and collect more samples to input statistical analysis.

Performance Analysis of the Gated Service Scheduling for Ethernet PON (Ethernet PON을 위한 Gated Service 스케줄링의 성능분석)

  • 신지혜;이재용;김병철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.31-40
    • /
    • 2004
  • In this paper, we analyze mathematically the performance of the gated service scheduling in the Interleaved Polling with Adaptive Cycle Time(IPACT) was proposed to control upstream traffic for Gigabit Ethernet-PONs. In the analysis, we model EPON MAC protocol as a polling system and use mean value analysis. We divide arrival rate λ into three regions and analyze each region accordingly In the first region in which λ value is very small, there are very few ONUs' data to be transmitted. In the second region in which λ has reasonably large value, ONUs have enough data for continuous transmission. In the third region, ONUs' buffers are always saturated with data since λ value is very large. We obtain average packet delay, average Queue size, average cycle time of the gated service. We compare analysis results with simulation to verify the accuracy of the mathematical analysis. Simulation requires much time and effort to evaluate the performance of EPONs. On the other hand, mathematical analysis can be widely used in the design of EPON systems because system designers can obtain various performance results rapidly. We can design appropriate EPON systems for varioustraffic property by adjusting control parameters.

Performance Analysis of a Packet Voice Multiplexer Using the Overload Control Strategy by Bit Dropping (Bit-dropping에 의한 Overload Control 방식을 채용한 Packet Voice Multiplexer의 성능 분석에 관한 연구)

  • 우준석;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 1993
  • When voice is transmitted through packet switching network, there needs a overload control, that is, a control for the congestion which lasts short periods and occurrs in local extents. In this thesis, we analyzed the performance of the statistical packet voice multiplexer using the overload control strategy by bit dropping. We assume that the voice is coded accordng to (4,2) embedded ADPCM and that the voice packet is generated and transmitted according to the procedures in the CCITT recomendation G. 764. For the performance analysis, we must model the superposed packet arrival process to the multiplexer as exactly as possible. It is well known that interarrival times of the packets are highly correlated and for this reason MMPP is more suited for the modelling in the viewpoint of accuracy. Hence the packet arrival process in modeled as MMPP and the matrix geometric method is used for the performance analysis. Performance analysis is similar to the MMPP IG II queueing system. But the overload control makes the service time distribution G dependent on system status or queue length in the multiplexer. Through the performance analysis we derived the probability generating function for the queue length and using this we derived the mean and standard deviation of the queue length and waiting time. The numerical results are verified through the simulation and the results show that the values embedded in the departure times and that in the arbitrary times are almost the same. Results also show bit dropping reduces the mean and the variation of the queue length and those of the waiting time.

  • PDF

A Development and Implementation of Model of Location Referencing Systems for ITS (ITS용 위치참조체계의 모델개발과 적용에 관한 연구)

  • 최기주;이광섭
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.191-191
    • /
    • 1998
  • ITS를 구성하는 서비스나 기능이 대부분 동적인 특성을 지니고 있어, 앞으로는 이를 효율적으로 뒷받침할 수 있는 공간데이터(Spatial Data)가 필요하다. 특히, 대부분의 ITS서비스와 기능이 정보의 신속한 전달을 위해서 유무선통신을 사용할 것이다. 또한, 최정 사용자서비스와 응용분야가 공간데이터라는 기본적인 정보를 공유하므로써 위치에 대한 정적·동적교통정보를 제공받게 된다. 정보사용자가 사용하는 공간데이터가 상이하다면, 정보의 공유가 이루어지지 않거나 정확하게 제공되지 않는 것은 자명한 사실이다. 이러한 이유는 정보사용자가 자신들의 정보수집, 정보전달, 정보분석 등의 목적에 적합한 공간데이터를 제작하여 유지하기 때문이다. 결과적으로 정보의 공유를 위해서는 상이한 공간데이터들 간에 동일한 교통정보를 공유하도록 하는 조작이나 방법이 필요하다. 서로 다른 원본으로 구성된 데이터를 통합하고 이를 ITS서비스와 기능을 위한 각 시스템에 적용하기 위해서는 서로 다른 수준을 가지고 있는 공간데이터(수치지도 데이터)의 해상도, 위치정확도, 속성정확도, 정밀도, 범위 등과 같은 문제들이 최종 응용시스템에 적용되어져야 하고, 이를 통해 공간적인 위치와 수치지도를 구성하는 각종 엔터티가 참조되어야 할 것이다. 이뿐 아니라, 향후 데이터 공유의 방법에 있어서도, 각종 무선통신의 발달과 인터넷과 같은 정보전달매체의 대중화가 이루어짐에 따라, 정보의 공유가 동시적으로 이루어질 것이다. 본 연구에서는 공공기관주도로 제작된 전국범위의 수치지도를 하여, ITS용 네트워크데이터구성을 위한 기능분석과 사양을 제시를 함으로써, 이에 대한 프로파일 개발한다. 정보공유를 위한 위치참조모델(LRM)과 프로파일을 ITS데이터에 적용함으로써, 위치참조모델의 기능과 적용성을 평가한다.키기 위한 향후의 연구과제를 제시한다.Si결정의 크기를 비교하였을 때 45$\mu\textrm{m}$ 이하의 분말을 섞어 압출하였을 때 가장 작은 초정 Si입자 크기를 얻음 을 볼 수 있었다. 주의 Fairfax County에 소재한 주간 고속도로 66번(I-66)과 인접 교통망의 교통자료를 사용하여 각종 돌발교통 혼잡 상황을 전제로 한 Traffic Simulation과 정보제공시나\리오를 INTEGRATION Model을 이용해 실행하였다. 그 결과 적응형 알고리즘이 개개인의 최단시간 경로를 제공하는 사용자 평형 경로안내전략에 비해 교통혼잡도와 정체시간의 체류정도에 따라 3%에서 10%까지 전체통행시간을 절약할 수 있다는 결론을 얻었다.출발참, 구성대외개방선면축심, 실현국제항선적함접화국내항반적전항, 형성다축심복사식항선망; 가강기장건설, 개피포동제이국제기장건설, 괄응포동개발경제발전적수요. 부화개시일은 각 5월 26일과 5월 22일이었다. 11. 6월 중순에 애벌레를 대상으로 처리한 Phenthoate EC가 96.38%의 방제가로 약효가 가장 우수하였고 3월중순 및 4월중순 월동후 암컷을 대상으로 처리한 Machine oil, Phenthoate EC 및 Trichlorfon WP는 비교적 약효가 낮았다.>$^{\circ}$E/$\leq$30$^{\circ}$NW 단열군이 연구지역 내에서 지하수 유동성이 가장 높은 단열군으로 추정된다. 이러한 사실은 3개 시추공을 대상으로 실시한 시추공 내 물리검층과 정압주입시험에서도 확인된다.. It was resulted from increase of weight of single cocoon. "Manta"2.5ppm produced 22.2kg of cocoon. It

  • PDF

A Study for Developing an Operating Mode-Based Emission Model for Korea (한국형 운행 모드 기반 배출량 산정 모형 개발에 관한 연구)

  • HU, Hyejung;FREY, Christopher;YOON, Chunjoo;YANG, Choongheon;KIM, Jinkook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.180-190
    • /
    • 2016
  • Atmospheric pollutants such as Nitrogen Oxides(NOx), Carbon Monoxide(CO), Carbon Dioxide($CO_2$), Particulate Matter(PM) and Hydrocarbons(HC) come from vehicle exhaust gases. Emission curves based on average travel speeds have been employed for estimating on-road emissions as well as evaluating environmental impacts of transportation plans and policies in Korea. Recently, there is a growing interest in estimation methods of vehicle emissions considering relationship between vehicle dynamic driving characteristics and emissions, and incorporating such emission estimators into traffic simulation models. MOVES Lite, a simplified version of MOVES, is one of the estimation methods. In this study, the authors performed a study to develop an adaptable version of MOVES Lite for Korea, called MOVES Lite-K. Vehicle types, driving characteristics, emission rates, and emission standards of Korea were reflected in MOVES Lite-K. The characteristics of emission calculation of MOVES Lite-K and NIER emission curves were compared and the adaptability of MOVES Lite-K were examined.

Performance Analysis of AAL2 Packet Dropping Algorithm using PDV on Virtual Buffer (PDV를 이용한 가상 버퍼상의 AAL2 패킷 폐기 알고리즘과 성능분석)

  • Jeong, Da-Wi;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.20-33
    • /
    • 2002
  • Usage of ATM AAL2 packets becomes dominant to increase transmission efficiency of voice traffic in the backbone network. In case of voice service that uses AAL2 mechanism, if resources of network are enough, connection of new call is accepted. However, due to packets generated by the new call, transmission delay of packets from old calls can increase sharply. To control this behavior, in this paper we present an AAL2 buffer management scheme that allocates a virtual buffer to each call and after calculating its propagation delay variation(PDV), decides to drop packets coming from each call according to the PDV value. We show that this packet dropping algorithm can effectively prevent abrupt QoS degradation of old calls. To do this, we analyze AAL2 packet composition process to find a critical factor in the process that influences the end-to-end delay behavior and model the process by K-policy M/D/1 queueing system and MIN(K, Tc)-policy M/D/1 queueing system. From the mathematical model, we derive the probability generating function of AAL2 packets in the buffer and mean waiting time of packets in the AAL2 buffer. Analytical results show that the AAL2 packet dropping algorithm can provide stable AAL2 packetization delay and ATM cell generation time even if the number of voice sources increases dramatically. Finally we compare the analytical result to simulation data obtained by using the COMNET Ⅲ package.