• Title/Summary/Keyword: Traffic Big Data

Search Result 241, Processing Time 0.021 seconds

A Study on the Enhancement Process of the Telecommunication Network Management using Big Data Analysis (Big Data 분석을 활용한 통신망 관리 시스템의 개선방안에 관한 연구)

  • Koo, Sung-Hwan;Shin, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6060-6070
    • /
    • 2012
  • Real-Time Enterprise (RTE)'s key requirement is that it should respond and adapt fast to the change of the firms' internal and external situations including the change of market and customers' needs. Recently, the big data processing technology to support the speedy change of the firms is spotlighted. Under the circumstances that wire and wireless communication networks are evolving with an accelerated rate, it is especially critical to provide a strong security monitoring function and stable services through a real-time processing of massive communication data traffic. By applying the big data processing technology based on a cloud computing architecture, this paper solves the managerial problems of telecommunication service providers and discusses how to operate the network management system effectively.

Design of GlusterFS Based Big Data Distributed Processing System in Smart Factory (스마트 팩토리 환경에서의 GlusterFS 기반 빅데이터 분산 처리 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.70-75
    • /
    • 2018
  • Smart Factory is an intelligent factory that can enhance productivity, quality, customer satisfaction, etc. by applying information and communications technology to the entire production process including design & development, manufacture, and distribution & logistics. The precise amount of data generated in a smart factory varies depending on the factory's size and state of facilities. Regardless, it would be difficult to apply traditional production management systems to a smart factory environment, as it generates vast amounts of data. For this reason, the need for a distributed big-data processing system has risen, which can process a large amount of data. Therefore, this article has designed a Gluster File System (GlusterFS)-based distributed big-data processing system that can be used in a smart factory environment. Compared to existing distributed processing systems, the proposed distributed big-data processing system reduces the system load and the risk of data loss through the distribution and management of network traffic.

VTS BIG DATA를 활용한 해상교통관제항로 패턴 분석

  • Lee, Seung-Hui;Kim, Gwang-Il;Park, Geun-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.319-322
    • /
    • 2014
  • VTS(Vessel Traffic Center)는 관할해역의 해상교통데이터를 수집하여 해상교통관제를 수행하고 있다. 이러한 해상교통데이터는 가공되지 않는 정보이므로, 관제사 및 선박 등 사용자가 유용하게 활용할 수 있는 형태로의 분석이 필요하다. 이는 객관적인 데이터로 관제사 및 선박에서 해상교통 안전정책을 수립하는데 중요하다. 이를 위해 본 연구에서는 수년간 VTS에 축적되고 있는 BIG DATA를 활용하여 해상교통패턴을 분석하고자 한다. 분석하는 해상교통패턴은 통항분포, 선종별 항적 비교, 예부선의 강 조류 주의구역 판별, 항로상 어선 조업 현황분석 등을 통해 빅데이터를 활용한 관제구역설정, 집중관제구역 검토가 가능하다.

  • PDF

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Evaluation of Transit Transfer Pattern for the Mobility Handicapped Using Traffic Card Big Data: Focus on Transfer between Bus and Metro (교통카드데이터를 활용한 교통약자 대중교통 환승통행패턴 분석: 버스 지하철 간 환승을 중심으로)

  • Kwon, Min young;Kim, Young chan;Ku, Ji sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.58-71
    • /
    • 2021
  • The number of elderly people worldwide is rapidly increasing and the mobility handicapped suffering from inconvenient public transportation service is also increasing. In Korea and abroad, various policies are being implemented to provide high-quality transportation services for the mobility handicapped, and budget support and investment related to mobility facilities are being expanded. The mobility handicapped spends more time for transit transfer than normal users and their satisfaction with transit service is also lower. There exist transfer inconvenience points of the mobility handicapped due to various factors such as long transfer distances, absence of transportation facilities like elevators, escalators, etc. The purpose of this study is to find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. This study process traffic card transaction data and construct transfer travel data by user groups using smart card big data and analysis of the transfer characteristics for each user group ; normal, children, elderly, etc. Finally, find transfer inconveniences points by comparing transfer patterns between normal users and the mobility handicapped. This study is significant in that it can find transfer inconvenience points for convenient transit transfer of the mobility handicapped using Smart card Big data. In addition, it can be applicated of Smart card Big data for developing public transportation polices in the future. It is expected that the result of this study be used to improve the accessibility of transit transportation for mobility handicapped.

A Normal Network Behavior Profiling Method Based on Big Data Analysis Techniques (Hadoop/Hive) (빅데이터 분석 기술(Hadoop/Hive) 기반 네트워크 정상행위 규정 방법)

  • Kim, SungJin;Kim, Kangseok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1117-1127
    • /
    • 2017
  • With the advent of Internet of Things (IoT), the number of devices connected to Internet has rapidly increased, but the security for IoT is still vulnerable. It is difficult to integrate existing security technologies due to generating a large amount of traffic by using different protocols to use various IoT devices according to purposes and to operate in a low power environment. Therefore, in this paper, we propose a normal network behavior profiling method based on big data analysis techniques. The proposed method utilizes a Hadoop/Hive for Big Data analytics and an R for statistical computing. Also we verify the effectiveness of the proposed method through a simulation.

Structuring of unstructured big data and visual interpretation (부산지역 교통관련 기사를 이용한 비정형 빅데이터의 정형화와 시각적 해석)

  • Lee, Kyeongjun;Noh, Yunhwan;Yoon, Sanggyeong;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1431-1438
    • /
    • 2014
  • We analyzed the articles from "Kukje Shinmun" and "Busan Ilbo", which are two local newpapers of Busan Metropolitan City. The articles cover from January 1, 2013 to December 31, 2013. Meaningful pattern inherent in 2889 articles of which the title includes "Busan" and "Traffic" and related data was analyzed. Textmining method, which is a part of datamining, was used for the social network analysis (SNA). HDFS and MapReduce (from Hadoop ecosystem), which is open-source framework based on JAVA, were used with Linux environment (Uubntu-12.04LTS) for the construction of unstructured data and the storage, process and the analysis of big data. We implemented new algorithm that shows better visualization compared with the default one from R package, by providing the color and thickness based on the weight from each node and line connecting the nodes.

A Trip Mobility Analysis using Big Data (빅데이터 기반의 모빌리티 분석)

  • Cho, Bumchul;Kim, Juyoung;Kim, Dong-ho
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • In this study, a mobility analysis method is suggested to estimate an O/D trip demand estimation using Mobile Phone Signaling Data. Using mobile data based on mobile base station location information, a trip chain database was established for each person and daily traffic patterns were analyzed. In addition, a new algorithm was developed to determine the traffic characteristics of their mobilities. To correct the ping pong handover problem of communication data itself, the methodology was developed and the criteria for stay time was set to distinguish pass by between stay within the influence area. The big-data based method is applied to analyze the mobility pattern in inter-regional trip and intra-regional trip in both of an urban area and a rural city. When comparing it with the results with traditional methods, it seems that the new methodology has a possibility to be applied to the national survey projects in the future.

Big Data-Based Air Demand Prediction for the Improvement of Airport Terminal Environment in Urban Area (도심권 공항 터미널 환경 개선을 위한 빅 데이터 기반의 항공수요예측)

  • Cho, Him-Chan;Kwag, Dong-gi;Bae, Jeong-hwan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.165-170
    • /
    • 2019
  • According to the statistics of the Ministry of Land Transport and Transportation in 2018, the average annual average number of air traffic users for has increased by 5.07% for domestic flights and 8.84% for international flights. Korea is facing a steady rise in demand from foreign tourists due to the Korean Wave. At the same time, a new lifestyle that values the quality of life of individuals is taking root, along with the emergence of LCC, and Korean tourists' overseas tours are also increasing, so improvement and expansion of domestic airport passenger terminals is urgently needed. it is important to develop a structured airport infrastructure by making efficient and accurate forecasts of aviation demand. in this study, based on the Big Data, long-term domestic and international demand forecasts for urban airports were conducted.. Domestic flights will see a decrease in the number of airport passengers after 2028, and international flights will continue to increase. It is imperative to improve and expand passenger terminals at domestic airports.

A Study on the Air pollution Information transmission method using TPEG (TPEG을 이용한 대기오염 정보 전송 방안 연구)

  • Lee, SangWoon
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.521-528
    • /
    • 2013
  • Recently the increasing numbers of cars and traffic jamming makes air pollution condition more severely. Especially high-density population area, in most big cities like Bejing and Seoul, can lead to lung illness and other diseases. In this study to decrease this kind of air pollution condition, a method of air pollution information transmission is proposed. For the transmission of air pollution and traffic control data, international standard technology, the TPEG is applied.