Journal of the Korean Data and Information Science Society
/
제26권3호
/
pp.661-668
/
2015
교통사고는 인구의 증가와 그에 따른 자동차의 증가로 인하여 매년 증가하고 있다. 그러한 교통사고의 원인은 운전자의 부주의뿐만 아니라 도로상의 기상상황에 의해 영향을 받는다. 특히, 강수량, 시계, 습도, 흐림 정도, 기온 등에 의해 많은 교통사고들이 영향을 받는다. 따라서 본 연구는 다양한 기상 요인의 영향 정도에 따른 교통사고 발생 유무의 분석을 목적으로 하였다. 부산 해운대구의 센텀남대로 및 해운대로의 2013년도 교통사고 발생 자료와 지역별 상세 기상 관측 자료인 AWS 기상자료(시간당 강수량, 강수유무, 기온, 풍속), 시간대, 요일을 활용하여 로지스틱 회귀모형 및 의사결정나무모형을 이용하여 분석하였다. 그 결과 기상 요인 중 강수유무와 기온이 교통사고 발생에 영향을 미치는 요인으로 나타났다. 이러한 결과는 도로위의 기상상태에 따른 교통사고의 발생을 예측하는데 유용하게 사용할 수 있을 것이다.
According to the Korean Traffic Accident Analysis System (TAAS), more than 200,000 traffic accidents occur every year. Also, the statistics including auto insurance companies data show 1.3 million traffic accidents. In the case of TAAS, the types of traffic accidents are simply divided into four; frontal collision, side collision, rear collision, and rollover. However, more detailed information is needed to assess for advanced driver assist systems at intersections. For example, directional information is needed, such as whether the vehicle in the car accident way in a straight or a left turn, etc. This study intends to redefine the type of accident with the more clear driving direction and path by referring to the Negligence standards used in automobile insurance accidents. The standards largely divide five categories of car-to-car/motorcycle /pedestrian/cyclist, and highway, and the each category is classified into dozens of types by status of the traffic signal, conflict situations. In order to present more various accident types for auto insurance accidents, the standards are reclassified driving direction and path of vehicles from crash situations. In results, the car-to-car accidents are classified into 33 accident types, car-to-pedestrian accidents have 19 accident types, car-to-motorcycle accidents have 38 accident types, and car-to-cyclist accidents are derived into 26 types.
Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.
첨단 정보화시대에 교통사고처리 및 분석의 병행되는 업무는 개별적 수행에 따른 이중적 업무로 진행되고 있으며, 교통사고를 처리하는 현 경찰청은 최첨단 기술을 병행하지 못하고, 아직도 수작업에 의해 업무가 진행되고 있으며, 교통사고분석에 있어서는 지리요소와 개별 및 복합적 요소에 따른 교통사고 요인 대한 연구와 사고원인에 대한 사고분석에 관한 연구가 미흡한 실정이다 따라서, 교통안전정책을 효과적으로 수립 및 시행하고 이를 평가하기 위해서는 무엇보다 교통사고 자료를 토대로 교통사고 발생원인 및 특징에 대한 체계적, 과학적 분석이 선행되어야 한다. 교통사고 자료를 지형공간정보체계기반으로 구축하여 기존에 텍스트 형태의 자료 수집이 아닌 PDA를 이용하여 실시간으로 사고 자료를 표준 도로교통사고 자료 양식에 맞게 변환하여 저장 및 사고 정보를 관리할 수 있으며, 공간 데이터 특수성과 연계하여 사고원인에 대한 지리적 분석 데이터로 표출하는 통합 관리 시스템 개발에 관한 연구를 수행하였다.
Railroad traffic accident consists of train accident, level-crossing accident, traffic death and injury accident caused by train or vehicle, and it is showing a continuous downward trend over a long period of time. As a result of the frequency comparison of train accidents and level-crossing accidents using the railway accident statistics data of Railway Industry Information Center, the share of train accident is over 90% in the 1990s and 80% in the 2000s more than the one of level-crossing accidents. In this study, we investigated time series characteristic and short-term prediction of railroad crossing, as well as seasonal characteristic. The analysis data has been accumulated over the past 20 years by using the frequency data of level-crossing accident, and was used as a frequency data per month and year. As a result of the analysis, the frequency of accident has the characteristics of the seasonal occurrence, and it doesn't show the significant decreasing trend in a short-term.
KIDAS (Korean In-Depth Accident Study) is a data structure of accident investigation type, vehicle breakage and human injury database. A consortium of research institutes, universities, and medical institutions has been established and operated. KIDAS has the strongest difference from the TAAS (Traffic Accident Analysis System), which is the data of the National Police Agency, that it can grasp the injury information of passengers. In this study, the mean age and weight of the most frequent accident types in the KIDAS accident statistics were calculated to determine the degree of injury according to gender. Through the MADYMO analysis, it is aimed to grasp the difference of dummy injury using commercial dummy models and scaling models are currently used.
교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.
이상기후는 도로교통 사고 위협요소로써 빈번하게 심각한 영향을 주고 있다. 특히, 도로교통에서 기상변화 또는 재해에 의한 영향은 장대교량, 터널, 사면 및 결빙 지역에서 영향이 크기 때문에 이들 지역에 대한 관심 있는 관리가 필요하며 발생할 수 있는 사고를 줄이기 위해서도 집중적인 도로 관리와 도로 기상 정보 제공 및 조기 경보, 도로 순찰, 교통통제와 같은 요소들이 필요하다. 도로의 눈과 결빙은 제설로 위험을 줄일 수는 있으나, 강풍은 피할 수 없는 요소이다. 본 연구에서는 도로 기상 정보와 기후, 재해 정보를 활용하여 국지 지역에서 안전운전을 위한 경보 정보를 설계를 하고자 한다. 극한 기상에 노출된 운전자를 위한 최상의 경보 정보 설계는 도로 상황 감시 개선, 도로 기상정보 감시, 정확한 사용자 정보전달들이 될 것이며, 또한 바람 및 재해 상황에 대한 통계, 표면 조건 통계, 차종 및 차종에 따른 바람에 의한 사고 통계와 조기 경보 정책과 교육들도 이를 위해서는 수반되어야 할 요소들이다.
우리나라 연안 해역은 빈번한 선박조우로 인한 해양사고 발생 잠재 위험이 높은 해역이며 현재 각 항만의 VTS 관제실에서 VHF통달거리를 넘어서 통항하는 선박에 대하여는 정보 파악 자체가 불가능하고, VTS 관제범위 바깥해역에서는 효율적인 교통관리가 어려워 관련사고 예방이 어려운 실정이다. 최근 우리나라는 항만의 확장 및 신항만 개발에 따른 해상교통안전성 평가는 있지만 실시간으로 변화하는 해상교통환경 변화에 따른 위험도 정보를 제공할 수 있는 시스템은 없는 실정이다. 따라서 대상해역에서의 해상교통환경과 관련된 일반적인 정보 및 위험도 정보를 제공하고, 해상교통환경 평가를 통한 해역 위험도 여부를 평가할 수 있는 평가지표 개발이 필요하다. 본 연구에서는 선박운항자의 위험의식을 바탕으로 선박의 전장별, 선박의 조우 형태 중 횡단(Crossing situation) 상황에 따른 마주치는 각도($045^{\circ}$, $090^{\circ}$, $135^{\circ}$), 추월(Overtaking) 및 정면으로 마주치는 경우(Head-on situation)와 좌현, 우현에서 선박을 조우하였을 경우와 항계 내 및 항계 밖에서의 경우, 타선과의 속력 중 비슷하거나 또는 느리거나 빠를 경우, 타선과의 속력차에 따른 경우, 타선과의 거리에 따른 선박운항자의 주관적 위험도를 조사 분석하여 해상교통안전성 평가모델 개발을 위한 기초 식을 제안하였다. 제안한 기초 식은 국내 해상교통환경 평가에 적합한 것임을 확인하였다.
최근 우리나라의 경우 교통사고 예방활동으로 자동차 보유에 따른 교통사고 발생건수는 지속적으로 감소하고 있지만, 서울의 경우 다른 지역에 비해 자동차 1만대 대비 사고 건수는 전국에서 광주와 함께 가장 높게 나타나고 있다. 인적 재난인 교통사고를 예방하기 위한 다양한 연구들이 진행되어 왔다. 특히 교통사고에 대한 공간적 분석을 연구한 초기 연구들은 교통사고 클러스터 지역을 확인하기 위해 행정구역 별 교통사고 건수를 집계하거나, 커널밀도 방법을 통해 밀도를 추정하여 분석하는 경우가 다수를 이루었다. 그러나 교통사고는 도로를 따라 발생하는 사건이기 때문에 도로상에서 교통사고 다발구간을 찾는 것이 더 의미가 있을 수 있다. 따라서 본 연구는 도로 네트워크를 따라 교통사고 집중 지역을 찾고자 하였다. 본 연구에서는 2가지 방법으로 교통사고를 가장 가까운 도로 네트워크에 할당한 뒤, Getis-Ord $Gi^*$에 의한 핫스팟 분석을 통해 교통사고 다발구간을 분석하였다. 하나는 10m 단위의 일정한 도로 링크를 중심으로 분석을 수행하였으며, 다른 하나는 도로구간별 단위 길이 당 평균 교통사고를 계산하여 교통사고 밀집구간을 분석하였다. 첫 번째 방법에 의한 분석 결과 교통사고가 집중되는 특정 도로 구간을 명확하게 확인할 수 있는 반면, 두 번째 방법에 의한 분석 결과 도로링크의 특성에 따라 교통사고 집중지역이 길게 나타나는 특징을 확인할 수 있었다. 두 방법에 의한 교통사고 다발구간이 다르게 나타나는 것을 알 수 있으며, 향후 해당 지역의 교통환경을 분석하고 개선하기 위해서는 보다 명확한 구간을 파악하는 것이 유의미할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.