• 제목/요약/키워드: Traditional Chatbot

검색결과 5건 처리시간 0.019초

전통적인 챗봇과 ChatGPT 연계 서비스 방안 연구 (A Study on the Service Integration of Traditional Chatbot and ChatGPT)

  • 정천수
    • Journal of Information Technology Applications and Management
    • /
    • 제30권4호
    • /
    • pp.11-28
    • /
    • 2023
  • This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.

긍정적 감정 유발을 위한 AI챗봇기반 일기 작성 시스템 (AI Chatbot-Based Daily Journaling System for Eliciting Positive Emotions)

  • 김준현;문미경
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.105-112
    • /
    • 2024
  • 현대 사회에서 감정 표현과 자기 성찰은 스트레스 관리와 정신 건강에 긍정적인 영향을 미치는 핵심 요소로 간주하며, 이에 따라 일기 작성의 중요성이 대두되고 있다. 그러나 기존의 일기 작성 방식은 시간과 공간적 제약으로 인해 많은 사람이 이를 피하거나 어렵게 느끼고 있다. 최근 챗봇 및 감정 분석 기술의 급격한 발전은 이러한 문제를 해결하기 위한 중요한 수단으로 주목받고 있다. 본 논문에서는 GPT-3 모델과 감정 분석 기술을 결합한 인공지능 챗봇을 소개하며, 이를 활용하여 사용자의 채팅 데이터를 기반으로 자동으로 일기를 작성하는 시스템을 개발하는 과정을 기술한다. 본 시스템을 통해 사용자들은 더 편리하고 효율적인 방식으로 일기를 작성할 수 있으며, 자신의 감정을 보다 깊이 이해하고 긍정적인 감정을 촉진하는 데 기여할 것으로 기대한다.

Design and Implementation of an LLM system to Improve Response Time for SMEs Technology Credit Evaluation

  • Sungwook Yoon
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.51-60
    • /
    • 2023
  • This study focuses on the design of a GPT-based system for relatively rapid technology credit assessment of SMEs. This system addresses the limitations of traditional time-consuming evaluation methods and proposes a GPT-based model to comprehensively evaluate the technological capabilities of SMEs. This model fine-tunes the GPT model to perform fast technical credit assessment on SME-specific text data. Also, It presents a system that automates technical credit evaluation of SMEs using GPT and LLM-based chatbot technology. This system relatively shortens the time required for technology credit evaluation of small and medium-sized enterprises compared to existing methods. This model quickly assesses the reliability of the technology in terms of usability of the base model.

클라우드 경비지출관리 솔루션의 RPA 모듈 구현에 관한 연구 (A Study on the RPA Module Implementation of Cloud Travel and Expense Management System)

  • 이인성;오인하
    • 융합정보논문지
    • /
    • 제11권4호
    • /
    • pp.46-54
    • /
    • 2021
  • 4차 산업 혁명의 실현이 구체화 되면서 기업 업무환경에 대한 패러다임이 전통적 노동환경에서 디지털 노동환경으로 변화되어가고 있다. 특히 RPA(Robotic Process Automation), 챗봇과 같은 기술들은 단순 반복적인 작업을 자동화하여 인간의 노동량을 감소시키고 인간이 더욱 가치 있는 작업 또는 노동에 집중할 수 있도록 지원한다. 본 논문에서는 퍼블릭 클라우드 컴퓨팅 기반의 경비지출관리 솔루션을 활용하고 있는 기관이나 기업들이 이러한 로봇 프로세스 자동화 기술과 챗봇 기술을 접목하여 경비지출 보고서 관리 업무를 간소화하는 클라우드 모듈을 개발한다. 개발된 모듈은 전문가 평가를 진행하여 80.3%의 만족도를 보였고 용이성 측면에서 가장 높은 94%의 만족도를 확인할 수 있었다. 연구 결과를 바탕으로 향후 연구에서는 경비지출관리 업무와 관련된 업무 시스템을 추가로 연계하여 기업 내·외부에서 발행하는 업무를 단일 RPA 환경으로 확장하고자 한다.

봇 프레임워크를 활용한 챗봇 구현 방안 (Method of ChatBot Implementation Using Bot Framework)

  • 김기영
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.56-61
    • /
    • 2022
  • 본 논문에서 챗봇에서 사용하는 AI알고리즘과 자연어처리 방법을 분류하고 제시하고 챗봇 구현에 사용할 수 있는 프레임워크에 대해서도 기술한다. 챗봇은 사용자 인터페이스를 대화방식으로 구성하여 입력된 문자열을 해석하고 입력된 문자열에 적절한 답을 학습된 데이터에서 선택하여 출력하는 구조의 시스템이다. 최근 콜센터와 주문 업무에 적용하여 인건비를 감소하고 정확한 업무를 할 수 있는 장점이 있다. 하지만 질문에 대한 적정한 답변 집합을 생성하기 위해 학습이 필요하며 이를 위해 상당한 계산 기능을 갖는 하드웨어가 필요하다. 개발을 하는 업체는 물론 AI분야 개발을 학습하는 학생들의 실습은 한계가 있다. 현재 챗봇은 기존의 전통적인 업무를 대체하고 있으며 시스템을 이해하고 구현하는 실습과정이 필요한 실정이다. 정형화되어 있는 데이터에 대해서만 응답을 하는 수준을 넘어 딥러닝 등의 기술을 적용하여 비정형 데이터를 학습시켜 질문에 대한 응답의 정확성을 높이기 위해 RNN과 Char-CNN 등을 사용해야한다. 챗봇을 구현하기 위해서는 이와 같은 이론을 이해하고 있어야한다. 본 논문에서는 단기간에 챗봇 코딩교육에 활용할 수 있는 방안과 기존 개발자, 학생들이 챗봇 구현을 할 수 있는 플랫폼을 활용하여 학생들이 전체시스템을 구현 예를 제시하였다.