• Title/Summary/Keyword: Tractor attached

Search Result 69, Processing Time 0.027 seconds

Design of a Tire-Attachable Cage Wheel for Wetland Use (II) -Soil-cage wheel interaction- (트랙터용 습지 보조 차륜의 설계(II) -케이지 휠과 토양의 상호 작용-)

  • 오영근;김경욱;박금숙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Interactions between cage wheel and soil under the wet paddy field condition were analyzed. The cage wheel as a traction aid to driving tires of tractor was attached to the outside of the tires. The driving torque transmitted only to the cage wheel was measured and its effect on the total driving torque by both the tires and cage wheel was analyzed. Mathematical models were developed to predict the soil thrusts y a single lug and by the cage wheel with many lugs, respectively. Experimental results showed that as the diameter of cage wheel increased, positive effects of the cage wheel on the traction also increased. About 33-40% of the total traction force was obtained by the cage wheel with a diameter 1,182mm and 49-55% with a diameter 1,222mm. The peak thrust of the single lug of cage wheel increased by 31% and 59%, respectively when the diameter of the cage wheel increased from 1,182mm to 1,222mm and 1,262mm. The thrust by the cage wheel was estimated by using the developed mathematical models and the results were proved that the models are reliable for the estimation of the traction by the cage wheels.

  • PDF

Design optimization of structural component (hitch bracket of tractor): A reverse engineering approach

  • Dilip K. Sahu;Priyam P. Tripathy;Trupti R. Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • v.89 no.5
    • /
    • pp.467-477
    • /
    • 2024
  • Manufacturing industries, now-a-days, focus mostly on redesigning of the products for reducing cost and lead-time via detailed analysis of its composition and constructional design regarded as the Reverse Engineering (RE) process that involves the acquisition of relevant data of the original product, analysis for its functional use and finally, reproduction of the design for improving the functionality. In the present work, a new model based on optimization at different steps of RE, is proposed to redesign a structural component, which is subjected to severe tensile stress while in service. The component under study is an accessory namely, hitch bracket, attached to the rear axle of a tractor to connect it to the plough. The methodology includes building of a 3D Computer Aided Design (CAD) model from the scanned data of the existing component with the help of 3D scanner. Computer Aided Engineering (CAE) analysis is carried out on the CAD model with existing load conditions by Finite Element Analysis (FEA). Topological optimization is carried out giving rise to a modified/optimized design of the component. It is observed that the performance of the modified component improves significantly with simultaneous weight reduction without affecting its functional use and the manufacturing process setup.

Performance Evaluation and Design of an Edible Fresh Corn Harvesting Machine (식용 풋옥수수 수확 시험장치 설계 및 성능평가)

  • Kang, Na Rae;Choi, Il Su;Kim, Young Keun;Choi, Yong;Yu, Seung Hwa;Woo, Jea Keun;Hyun, Chang Sik;Kim, Sung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • In this study, an edible fresh corn harvest testing machine was designed and manufactured. And harvesting performance was analyzed through the field test. The testing machine is of the tractor attached type. It is connected to the tractor PTO shaft to transfer power to the each part of the harvesting machine. And it harvests fresh corn by one row through the processes of cutting, stem crushing, detaching, and collecting. The performance test was performed at PTO speed (540, 750, 1050 rpm, respectively), working speed (0.1, 0.15, 0.2 m/s, respectively), and cropping cultivation (row spacing·hill spacing 70·25 cm, 70·40 cm, 90·30 cm, respectively). The performance test was repeated three times in the 15 m section. The detachment loss ratio, uncollected crop ratio, damage ratio, and harvest ratio were analyzed. As a result of the performance test, it was analyzed that the PTO speed 540 rpm, running speed of 0.1 m/s, and row spacing·hill spacing 70·40 cm were the optimal condition.

Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor (트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구)

  • Shin, Chang-Seop;Kim, Jun-Hee;Ha, Yu-Shin;Park, Tusan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.

Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data (필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석)

  • Kim, Jeong-Gil;Lee, Dong-Keun;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

Gear Rating and Contact Pattern Analysis for Rotavator Gearbox Using Actual Working Load (실 작업 부하를 이용한 로타베이터 기어박스의 강도 평가와 치면 접촉 패턴 해석)

  • Kim, Jeong-Gil;Cho, Seung-Je;Lee, Dong-Keun;Oh, Joo-Young;Shin, Min-Seok;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.92-99
    • /
    • 2021
  • The rotavator is attached to the three-point hitch at the rear of a tractor and uses the power take-off strength of the tractor to perform soil harrowing. During operation, the power transmitted to the gearbox of the rotavator varies with the soil characteristics and depth. These properties influence the reliability of the gearbox. In this study, actual load measurements and analyses were performed using a rotavator. In addition, the safety factor and fatigue life of the gearbox components were determined using the analysis results. Through analysis and tests, the contact pattern of the gear tooth surface was identified. The input power values of the gearbox were minimum and maximum at 54.5% and 84.5% of the tractor power, respectively. Based on the actual load analysis results, the strength and fatigue life of the gearbox components were satisfied. In addition, through the analysis and testing of the gear contact pattern, it was confirmed that a similar contact occurred. Through the analysis, the magnitude of the load acting on the tooth surface of the gear was confirmed.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

The Productivity and Cost of Yarding Operations Using a Tractor-attached Winch in Pinus densiflora Stands (소나무 임분에서의 트랙터윈치를 이용한 집재작업 생산성 및 비용분석)

  • Jeong, Eung-Jin;Cho, Min-Jae;Park, Jeong-Mook;Cho, Koo-Hyun;Yoo, Young-Min;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.574-581
    • /
    • 2019
  • The present study analyzed the productivity and cost of winching operations for evaluating the efficiency of a tractor-attached winch in a Pinus densiflora thinning site located in the Yangyang County of Gangwon-do. The mean yarding distance and mean timber volume were 29 m and 0.15 ㎥, respectively. In the 95 cycles of yarding operations, the uphill and downhill yarding operations constituted 51% and 49%, respectively, of the total yarding operations. The productivity of the uphill yarding operation was 2.28 ㎥/h, and the productivity of the downhill yarding operation was 1.89 ㎥/h. The findings of this study revealedthat productivity would increase by 0.5 ㎥/h when the rate of utilization of the machine is increased to 80% by reducing the operational delay time. The cost of the downhill yarding operation was 44,116 KRW/㎥, whereas that of the uphill yarding operation was 53,369 KRW/㎥. The difference in cost resulted from the difference in the number of yarding stems (stems/cycle). Furthermore, the results of the multiple linear regression equation developed for predicting the yarding operation times showed that productivity was significantly affected by working conditions such as yarding distance (m), the number of stems per cycle (stems/cycle), and the terrain slope (%) in the uphill and downhill yarding operations. Further research is required for developing an accurate prediction model equation according to a yarding direction.

Design Factors for Chinese Cabbage Harvester Attachable to Tractors (트랙터부착형 배추수확장치의 설계요인)

  • Hong, J. T.;Choi, Y.;Sung, J. H.;Kim, Y. K.;Lee, K. M.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.337-354
    • /
    • 2001
  • This study was conducted in order to develop a Chinese cabbage harvester attachable to tractors. For designing Chinese cabbage harvester in which laboratory and field tests were conducted with to determine feasible values design factors. To adopt the various sizer of C-cabbages, U-type soft rubber band was attached to the chain conveyor with an angle. Required torque of the conveyor axle was about 206-210kgf$.$cm. And the required peripheral speed of the disk cutter was 6.54m/s or more to have a clean session in root cutting. Three different harvest method were tested. The best harvesting method with minimum pulling force and damage was disk cutting flying just above the soil surface were the cut chinese cabbages are transferring to the holding conveyor attached soft rubber lug in prompt. Theoretical speed ratio of the tractor travel and feed of a chain conveyor was 1:1.2 with the attaching angle of 30 degree and 1:1.1 with the angle of 20 degree. Actual field experiment showed the speed ratio of 1:1.5 was the best because of the slip effect.

  • PDF

Development of an Automatic Soil Hardness Measuring System Mountable on Agricultural Tractors (트랙터 부착형 자동 토양경도 측정 시스템 개발)

  • 이현동;김기대;김찬수;김성환
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-546
    • /
    • 2002
  • In this study an automatic soil hardness measuring system mountable on agricultural tractors was developed to improve the accuracy of manual soil hardness testers by a constant penetrating rate, right direction of the cone-penetrometer and the isolation of vibration from the operator. This was necessary to supply similar experimental condition for performance test of new model and comparative experiment. The results of the study are summaried as follows; 1. The system consisted of a sensing part of soil hardness, a driving part of the measuring system and an attaching part between the tractor and the measuring system. 2. The allowable limit value of the system developed was set to 392N to protect from breaking the serve motor and the coupling used in this system. 3. The driving shaft penetrated into soil by 0.3m to measure soil hardness. The soil hardness was measured at the depth of 0.3m from the soil surface but the penetrating work was stopped and the driving shaft was pulled out to protect the system when the value of the soil hardness was too big on foreign substances like stones or straws. 4. Two values measured by automatic measuring system developed in this research and manual penetrometer were compared by statistics hypothesis testing method. When two people measured the soil hardness at the depth of 0.1 and 0.15m by manual cone penetrometer, there was no relationship between two values by two people but the values at the same depths by automatic measuring system developed showed similarity. The automatic system, therefore, developed in this research was proper for measuring soil hardness.