• 제목/요약/키워드: Tractor Implement

검색결과 40건 처리시간 0.017초

3차원스캐닝과 역설계를 이용한 트랙터 복합작업기 치수 검사 (Inspection of Composite Working Implement of Tractor using 3D Scanning and Reverse Design)

  • 이충호
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.45-53
    • /
    • 2017
  • Disc harrow-type composite working implements of tractors are able to work almost 15km/hr. Soil reversing and plowing of agricultural fields are thereby faster than the existing rotavator speed of 2.5 km/h. In Korea, its supply process is being delayed because of the traditional tillage method of rotavator plowing operations. To develop products suitable for the domestic environment, an analysis and inspection was performed on the products of advanced specifications. 3D modeling was performed on main parts and frames using 3D scanner.

Path planning for autonomous lawn mower tractor

  • Song, Mingzhang;Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제42권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Path planning is an essential part for traveling and mowing of autonomous lawn mower tractors. Objectives of the paper were to analyze operation patterns by a skilled farmer, to extract and optimize waypoints, and to demonstrate generation of formatted planned path for autonomous lawn mower tractors. A 27-HP mower tractor was operated by a skilled farmer on grass fields. To measure tractor travel and operation characteristics, an RTK-GPS antenna with a 6-cm RMS error, an inertia motion sensing unit, a gyro compass, a wheel angle sensor, and a mower on/off sensor were mounted on the mower tractor, and all the data were collected at a 10-Hz rate. All the sensor data were transferred through a software program to show the status immediately on the notebook. Planned path was generated using the program parameter settings, mileage and time calculations, and the travel path was plotted using developed software. Based on the human operation patterns, path planning algorithm was suggested for autonomous mower tractor. Finally path generation was demonstrated in a formatted file and graphic display. After optimizing the path planning, a decrease in distance about 13% and saving of the working time about 30% was achieved. Field test data showed some overlap, especially in the turning areas. Results of the study would be useful to implement an autonomous mower tractor, but further research needs to improve the performance.

트랙터의 전자유압식(電子油壓式) 히치제어 시스템에 관한 연구(硏究)(I) -위치제어(位置制御)- (Electronic-Hydraulic Hitch Control System for Agricultural Tractor -Position Control-)

  • 유수남;류관희;박준걸
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.168-180
    • /
    • 1989
  • This study was attempted to develop the electronic-hydraulic hitch control system for position control of tractor plow and investigate the control performance of the system through experiments. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in position control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. The following conclusions were derived from the study; 1. For the position control system operated on on-off control mode, positions of implement were controlled within ${\pm}0.73^{\circ}{\sim}{\pm}1.46^{\circ}$ in rockshaft angle to the reference position when the hydraulic flow rates were 5~15 l/min. For the position control system operated on PWM control mode, positions of implement were controlled within ${\pm}0.73^{\circ}$ to the reference position regardless of hydraulic flow rates. It means that the implement could be positioned more accurately to the reference position on PWM control mode than on on-off control mode. 2. As results of the frequency responses of the position control systems, no clear difference in control performance between on-off control and PWM control modes was found. As the hydraulic flow rates increased, the corner frequencies of amplitude attenuation and phase-angle change increased. It means that the control performance of the system could be improved as the hydraulic flow rate increases.

  • PDF

경사지 제초 작업기의 전자제어시스템 성능분석 (Performance Analysis of Electronic Control System for Weeding Implement such as Slope Land)

  • 박원엽;홍성하;이재민;이상식
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권3호
    • /
    • pp.229-238
    • /
    • 2015
  • 본 연구는 이러한 경사 토지와 경사진 도로 측면 등 다양한 영역에서 작동하는 캔을 구현 잡초의 전자 제어 시스템을 개발 하였다. 잡초 구현은 다섯 가지 주요 부분으로 구성 전자 제어 시스템, 유압 시스템, 메인 프레임, 붐 및 팔을 이용하는 기계와 회전형 제초기. 그리고 잡초는 전자 제어 시스템의 사용을 고려 트랙터의 3 점 히치 의해 부착될 수 있도록 개발되었다 구현한다. 그 결과, 전자 제어 시험 제초 구현 경사 땅 트랙터에 장착하여 실시했다. 전자 제어 시스템의 테스트 결과가 만족 제초 성능을 보여 주었다.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Development of dynamics simulation model for 3-point hitch of agricultural tractor during plow tillage

  • Mo A Son;Seung Yun Baek;Seung Min Baek;Hyeon Ho Jeon;Ryu Gap Lim;Yong Joo Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.989-1000
    • /
    • 2022
  • Agricultural operations are performed in uneven environments by attaching an implement on the 3-point hitch of a tractor. A high load is thus placed on the 3-point hitch, and fatigue and failure of the hitch may occur during agricultural operations. In this study, a dynamic simulation model was developed to predict the load occurring on the eyebolt of a 3-point hitch, which is the main damaged component. The simulation model was developed and validated using agricultural data as simulation input and validation data. The dynamics model was developed using the specifications of a 78 kW class tractor. A measurement system was constructed to measure the simulation input and validation data. The simulation model was validated using a traction load on an eye bolt, which was measured during plow tillage operation. The measurement results showed that the average traction load on the left and right lower link and the top link were 8,099.97, 4,943.06, and 636.11 N, respectively. The simulation results and the measured traction load on the left eyebolt were respectively 610.30 and 597.15 N. The simulation results and measured traction load on the left eyebolt were respectively 1,179.78, and 1,145.06 N. The error between the simulation and measurement data was roughly 2% on the left eyebolt and 3% on the right eyebolt.

트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)- (Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control-)

  • 유수남;류관희;윤여두
    • Journal of Biosystems Engineering
    • /
    • 제14권4호
    • /
    • pp.229-241
    • /
    • 1989
  • The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

  • PDF

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.425-436
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제42권1호
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.