• Title/Summary/Keyword: Traction stress

Search Result 146, Processing Time 0.019 seconds

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads

  • Zhao, Li;Gan, Wei Z.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.27-40
    • /
    • 2015
  • The rational analytical solutions are presented for functionally graded beams subjected to arbitrary tractions on the upper and lower surfaces. The Young's modulus is assumed to vary exponentially along the thickness direction while the Poisson's ratio keeps unaltered. Within the framework of symplectic elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local behavior. The complete elasticity solutions presented here include homogeneous solutions and particular solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered and compared with established results, illustrating the effects of material inhomogeneity on the localized stress distributions.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Study on the Battery Charger for Next Generation High Speed Train (차세대 고속 전철용 Battery Charger 에 관한 연구)

  • Jeong, Han-Jeong;Lee, Won-Cheol;Lee, Sang-Seok;Paik, Jin-Sung;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer

  • Ezzat, Magdy A.;El-Bary, Alaa A.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • In this work, the model of magneto-thermoelasticity based on memory-dependent derivative (MDD) is applied to a one-dimensional thermal shock problem for a functionally graded half-space whose surface is assumed to be traction free and subjected to an arbitrary thermal loading. The $Lam{\acute{e}}^{\prime}s$ modulii are taken as functions of the vertical distance from the surface of thermoelastic perfect conducting medium in the presence of a uniform magnetic field. Laplace transform and the perturbation techniques are used to derive the solution in the Laplace transform domain. A numerical method is employed for the inversion of the Laplace transforms. The effects of the time-delay on the temperature, stress and displacement distribution for different linear forms of Kernel functions are discussed. Numerical results are represented graphically and discussed.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

INFLUENCE OF MINIPLATE SHAPES AS SKELETAL ANCHORAGE FOR APPLICATION OF ORTHOPEDIC FORCE: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (악정형력 적용을 위한 골내 고정원으로서 미니플레이트 형상의 영향: 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Baek, Seung-Hak;Choi, Dong-Soon;Park, Young-Wook;Kim, Ji-Hyuck;Cha, Bong-Kuen
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • Purpose: This study was performed to evaluate the stress distribution in the bone and the displacement distribution of the miniscrew under orthopedic force with two different types of miniplate design as skeletal anchorage for orthopedic treatment. Materials and methods: Finite element models were made for 6-hole miniplate (0.8mm in thickness), which were designed in two different shapes-one is curvilinear shaped (C plate, Jeil Medical Co., Korea) and another, Y shaped (Y plate), fixed with 3 pieces of miniscrew 2mm-diameter and 6mm-long respectively. A traction force of 4 N was applied in $0^{\circ}$, $30^{\circ}$ and $60^{\circ}$ to imaginary axis connecting two unfixed distalmost holes of the miniplate. Results: The maximum von Mises stress in the bone was much greater in the cortical portion rather than in the cancellous portion. C plate showed greater maximum von Mises stress in the cortical bone than Y plate. The maximum displacement of the miniscrew was greater in C plate than Y plate. The more increased the angle of the applied orthopedic force, the greater maximum von Mises stress in the bone and maximum displacement of the miniscrew. It was observed that in C plate, the von Mises stress in the bone and displacement of the miniscrew were distributed around the distalmost screw-fixed area. Conclusions: The results suggest that Y plate should have the advantage over C plate and in the placement of the miniplate, its imaginary axis should be placed as parallel as possible to the direction of orthopedic force to obtain its primary stability.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.