• Title/Summary/Keyword: Traction Motor

Search Result 408, Processing Time 0.025 seconds

COMPARISON OF CONVERTER TOPOLOGIES FOR A SWITCHED RELUCTANCE MOTOR

  • Rim, Geun-Hie;Kang, Wook
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.676-684
    • /
    • 1992
  • The advent of inexpensive high power switching devices revived the interest in switched reluctance motor(hereafter referred to as SRM) drives. In the late 60's, the potential of SRM for traction application attracted researchers. Since then the progress in research of the SRM drive has been phenomenal. In this paper, a review of the basic principle of operation of the SRM, currently available converter topologies, the controller requirements and some design considerations are included.

  • PDF

Development of Inverter Considering The Dynamic Characteristics of The IPMSM (매입형 영구자석형 동기전동기의 운전 특성을 고려한 인버터 개발)

  • 김종무;박정우;구대현;김흥근
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.303-306
    • /
    • 1999
  • Traction system of 2-motor driven electric vehicle(EV) is consisted of motor(IPMSM), inverter, and battery. In order to enhance dynamic characteristics of the system, such driving conditions as acceleration ability and load(current magnitude) should be considered in the vector control algorithm for the IPMSM. So, in this paper, the most suitable structure of vector control algorithm for the EV is considered. Conformity had been verified through experimental results.

  • PDF

A Study on Inductance Calculation of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 산정에 관한 연구)

  • Kim, Sung-Il;Lee, Suk-Hee;Hong, Jung-Pyo;Lee, Ji-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.745-746
    • /
    • 2006
  • The purpose of this paper is to discuss the reasons creating the difference between inductances calculated and measured in the interior permanent magnet synchronous motor designed for the traction. Moreover, the method applied to estimate the inductance is introduced in this paper.

  • PDF

5-Level Inverter for Excitation Voltage Control of SRM (SRM의 여자전압제어를 위한 5-레벨 인버터)

  • Lee, S.H.;Park, S.J.;Ahn, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.294-296
    • /
    • 2000
  • Energy recovery in the regenerative region is very important when SRM(Switched Reluctance Motor) is used in traction drive. This is because that to reduce energy loss during mechanical braking and/or to have a high efficiency drive during braking. To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation in SRM.

  • PDF

Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation (IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰)

  • Park, Dong-Kyu;Suh, Yong-Hun;Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF

Harmonic Iron Loss Analysis of Permanent Magnet Motor for High-Speed Train (고속 전철 견인용 영구자석 전동기의 고조파 철손해석)

  • Seo, Jang-Ho;Chung, Tae-Kyung;Jung, Sang-Yong;Lee, Cheol-Gyun;Jung, Hyun-Kyo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2009
  • To predict efficiency of interior permanent magnet synchronous motor (IPMSM) for traction motor and to cope with the risk of demagnetization in the permanent magnets, accurate iron loss analysis and understanding of the characteristic of the iron loss are very important at motor design stage. In this paper, we present the method to estimate the iron loss for the IPMSM considering the driving conditions such as both field weakening control and maximum torque per ampere control.

A Study on Characteristics of Traction Induction Motor According to Rotor Slot-parameters (회전자 슬롯치수에 따른 견인용 유도전동기 특성에 관한 연구)

  • Koo, Dae-Hyun;Kang, Do-Hyun;Ha, Hoi-Doo;Park, Jung-Woo;Lee, Jae-Bong;Kim, Jong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.230-233
    • /
    • 1997
  • In this study, design and analysis of 3-phase induction moter are as follows. - Motor characteristics analysis by equivalent circuit ${\cdot}$ Motor characteristics analysis according to variation of rotor slot-tip ${\cdot}$ Motor characteristics analysis according to variation of rotor slot-mouse ${\cdot}$ Motor characteristics analysis according to variation of rotor slot-opening

  • PDF

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

A Study on Cooling Performance of In-wheel Motor for Green Car (그린카용 인휠 모터의 냉각 성능에 관한 연구)

  • Jung, Jung-Hun;Kim, Sung-Chul;Hong, Jung-Pyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

A Study on the Enhancement of the Cooling Structure for In-wheel Motor (인휠 모터의 냉각 구조 개선에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Recently, the automobile of the future will be able to substitute an electric vehicle for an internal combustion engine, so the following research is actively in the process of advancing. A traction motor is one of the core parts which compose the electric vehicle. Especially, it is difficult to connect cooling water piping to an in-wheel motor because the in-wheel motor is located within the wheel structure. This structure has disadvantage for closed type and air cooling, so the cooling design of motor housing and internal in-wheel motor is important. In this study, thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. In order to improve cooling efficiency of the motor, we variously changed geometries of housing and internal shape. As a result, we found that the cooling efficiency was most excellent, in case the cooling groove direction was same with air flow direction and arranged densely. Furthermore, we investigated the cooling performance enhancement with respect to variable geometries of internal in-wheel motor.