• Title/Summary/Keyword: Tracking radar

Search Result 350, Processing Time 0.028 seconds

추적레이다에 의한 인체에 대한 영향(HERP) 및 전자파 간섭(EMI) 분석

  • Kim, Dae-Oh;Sin, Han-Seop;Kim, Tae-Hyung;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.239-246
    • /
    • 2005
  • This paper analyze the hazard of electromagnetic radiation to personnel (HERP) and electromagnetic interference (EMI) by C-band tracking radar. Especially, this analysis defines the safety distance for the controlled & uncontrolled personnel from high power radiation of electromagnetic wave within the main beam of 3 degrees by C-band tracking radar. In addition to HERP, the analysis of electromagnetic interference between tracking radar and weather radar was accomplished to decide the safety distance for EMI protection.

  • PDF

A Study On The Doppler Radar Of Range Measurement On Electro-Optical Tracking System (광학추적장비의 거리측정 도플러 레이더에 관한 연구)

  • Park, Doo-Jin;Noh, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.700-702
    • /
    • 2016
  • The Doppler Radar that mounted on Electro Optical Tracking System has been operated to measure range and velocity during the initial mission of space launch vehicle at Naro space center. In this paper, we mentioned configuration of MFCW(Multi frequency Continuous Wave) and FMCW(Frequency Modulation Continuous Wave) Doppler Radar on Electro Optical Tracking System and described method of range measurement.

  • PDF

Tracking and Orbit Determination of International Space Station using Radar (레이더를 이용한 국제우주정거장 추적 및 궤도결정)

  • Yu, Ki-Young;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • Increase of space debris makes low earth orbit(LEO) environment more complex day by day and space situation Awareness(SSA) is becoming more important. As an essential part of SSA, space object surveillance and tracking is studied by many countries including America and Europe. And radar system forms the backbone of an space surveillance and tracking. Currently, Korea operates many LEO satellites like KOMPSAT but does not have dedicated radar systems which provide collision surveillance between satellite and space debris. Korea Aerospace Research Institute(KARI) NARO space center operates launch-vehicle tracking radar system in GOHEUNG and JEJU, respectively. In this paper, we describe developing operation concept to track International Space Station(ISS) using NARO radar and results of tracking. Then, we describe ISS orbit determination using radar tracking data. Lastly, orbit determination result is compares with TLE for analyzing effectiveness of orbit determination.

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

Markov Chain of Active Tracking in a Radar System and Its Application to Quantitative Analysis on Track Formation Range

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1275-1283
    • /
    • 2015
  • Markov chains for active tracking which assigns additional track illuminations evenly between search illuminations for a radar system are presented in this article. And some quantitative analyses on track formation range are discussed by using them. Compared with track-while-search (TWS) tracking that uses scan-to-scan correlation at search illuminations for tracking of a target, active tracking has shown the maximum improvement in track formation range of about 27.6%. It is also shown that the number and detection probability of additional track beams have impact on the track formation range. For the consideration of radar resource management at the preliminary radar system design stage, the presented analysis method can be used easily without the need of Monte Carlo simulation.

Real-time position tracking of traffic ships by ARPA radar and AIS in Busan Harbor, Korea (부산항에서 ARPA 레이더와 AIS에 의한 통한선박의 실시간 위치추적)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2008
  • This paper describes on the consolidation of AIS and ARPA radar positions by comparing the AIS and ARPA radar information for the tracked ship targets using a PC-based ECDIS in Busan harbor, Korea. The information of AIS and ARPA radar target was acquired independently, and the tracking parameters such as ship's position, COG, SOG, gyro heading, rate of turn, CPA, TCPA, ship s name and MMSI etc. were displayed automatically on the chart of a PC-based ECDIS with radar overlay and ARPA tracking. The ARPA tracking information obtained from the observed radar images of the target ship was compared with the AIS information received from the same vessel to investigate the difference in the position and movement behavior between AIS and ARPA tracked target ships. For the ARPA radar and AIS targets to be consolidated, the differences in range, speed, course, bearing and distance between their targets were estimated to obtain a clear standards for the consolidation of ARPA radar and AIS targets. The average differences between their ranges, their speeds and their courses were 2.06% of the average range, -0.11 knots with the averaged SOG of 11.62 knots, and $0.02^{\circ}$ with the averaged COG of $37.2^{\circ}$, respectively. The average differences between their bearings and between their positions were $-1.29^{\circ}$ and 68.8m, respectively. From these results, we concluded that if the ROT, COG, SOG, and HDG informations are correct, the AIS system can be improved the prediction of a target ship's path and the OOW(Officer of Watch) s ability to anticipate a traffic situation more accurately.

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

A Precise Location Tracking System with Smart Context-Awareness Based-on Doppler Radar Sensors (스마트한 상황인지를 적용한 도플러 레이더 센서 기반의 정밀 위치추정 시스템)

  • Moon, Seung-Jin;Kim, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1159-1166
    • /
    • 2010
  • Today, detecting the location of moving object has been traced as various methods in our world. In this paper, we preset the system to improve the estimation accuracy utilizing detail localization using radar sensor based on WSN and situational awareness for a calibration (context aware) database, Rail concept. A variety of existing location tracking method has a problem with receiving of data and accuracy as tracking methodology, and since these located data are the only data to be collected for location tracing, the context aware or monitering as the surrounding environment is limited. So, in this paper, we enhanced the distance aware accuracy using radar sensor utilizing the Doppler effect among the distance measuring method, estimated the location using the Triangulation algorithm. Also, since we composed the environment data(temperature, illuminancem, humidity, noise) to entry of the database, it can be utilized in location-based service according to the later action information inference and positive context decision. In order to verify the validity of the suggested method, we give a few random situation and built test bed of designed node, and over the various test we proved the utilizing the context information through route tracking of moving and data processing.

ECCM Design of Tracking Radar (추적 레이다의 대전자전 설계)

  • Hong-Rak Kim;Man-Hee Lee;Sung-Ho Park;Youn-Jin Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.51-57
    • /
    • 2024
  • The tracking radar system is a pulsed tracking system that searches, detects, and tracks targets in real time for ships operating in the ocean. Ships defend themselves through soft kill operations to confuse or deceive the tracking radar. Soft Kill operations include passive chaff and active noise jamming. This paper understands the basic concepts of electronic warfare and explains various deception systems in operation on ships. In addition, each deception The radar system design to respond to the system is explained.

Multiple Target Tracking using Normalized Rayleigh Likelihood of Amplitude Information of Target (Normalized Rayleigh Likelihood를 활용한 표적신호세기정보 적용 다중표적추적 기술)

  • Kim, Sujin;Jung, Younghun;Kim, Seongjoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • This paper presents a multiple target tracking system using Normalized Rayleigh likelihood of amplitude information of target. Although many studies of Radar systems using amplitude information have been studied, they are focused on single target tracking. This paper proposes the multiple target tracking using amplitude information as well as kinematic information from Radar sensor. The amplitude information are applied in generating the association probability of joint probabilistic data association(JPDA) algorithm through the normalized Rayleigh likelihood. It is verified that the proposed system can enhance the track maintenance and tracking accuracy, especially, in the target crossing case.