• Title/Summary/Keyword: Tracking algorithm

Search Result 2,941, Processing Time 0.03 seconds

TMC (Tracker Motion Controller) Using Sensors and GPS Implementation and Performance Analysis (센서와 GPS를 이용한 TMC의 구현 및 성능 분석)

  • Ko, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.828-834
    • /
    • 2013
  • In this paper, TMC (Tracker Motion Controller) as one of the many research methods for condensing efficiency improvements can be condensed into efficient solar system configuration to improve the power generation efficiency of the castle with Concentrated solar silicon and photovoltaic systems (CPV)experiments using PV systems. Microprocessor used on the solar system, tracing the development of solar altitude and latitude of each is calculated in real time. Also accept the value from the sensor, motor control and communication with the central control system by calculating the value of the current position of the sun, there is a growing burden on the applicability. Through the way the program is appropriate for solar power systems and sensors hybrid-type algorithm was implemented in the ARM core with built-in TMC, Concentrated CPV system compared to the existing PV systems, through the implementation of the TMC in the country's power generation efficiency compared and analyzed. Sensor method using existing experimental results Concentrated solar power systems to communicate the value of GPS location tracking method hybrid solar horizons in the coordinate system of the sun's azimuth and elevation angles calculated by the program in the calculations of astronomy through experimental resultslook clear day at high solar irradiation were shown to have a large difference. Stopped after a certain period of time, the sun appears in the blind spot of the sensor, the sensor error that can occur from climate change, however, do not have a cloudy and clear day solar radiation sensor does not keep track of the position of the sun, rather than the sensor of excellence could be found. It is expected that research is constantly needed for the system with ongoing research for development of solar cell efficiency increases to reduce the production cost of power generation, high efficiency condensing type according to the change of climate with the optimal development of the ability TMC.

Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition (저속주행환경에서 컬러비전 기반의 근거리 전방차량추적)

  • Rho, Kwang-Hyun;Han, Min-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3037-3047
    • /
    • 2000
  • This paper describes a method of tracking a close leading vehicle by color image processing using the pairs of tail and brake lights. which emit red light and are housed on the rear of the vehicle in stop-and-go traffic condition. In the color image converted as an HSV color model. candidate regions of rear lights are identified using the color features of a pair of lights. Then. the pair of tailor brake lights are detected by means of the geometrical features and location features for the pattern of the tail and brake lights. The location of the leading vehicle can be estimated by the location of the detected lights and the vehicle can be tracked continuously. It is also possible to detect the braking status of the leading vehicle by measuring the change in HSV color components of the pair of lights detected. In the experiment. this method tracked a leading vehicle successfully from urban road images and was more useful at night than in the daylight. The KAV-Ill (Korea Autonomous Vehicle- Ill) equipped with a color vision system implementing this algorithm was able to follow a leading vehicle autonomously at speeds of up to 15km!h on a paved road at night. This method might be useful for developing an LSA (Low Speed Automation) system that can relieve driver's stress in the stop-and-go traffic conditions encountered on urban roads.

  • PDF

Trend Properties and a Ranking Method for Automatic Trend Analysis (자동 트렌드 탐지를 위한 속성의 정의 및 트렌드 순위 결정 방법)

  • Oh, Heung-Seon;Choi, Yoon-Jung;Shin, Wook-Hyun;Jeong, Yoon-Jae;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.236-243
    • /
    • 2009
  • With advances in topic detection and tracking(TDT), automatic trend analysis from a collection of time-stamped documents, like patents, news papers, and blog pages, is a challenging research problem. Past research in this area has mainly focused on showing a trend line over time of a given concept by measuring the strength of trend-associated term frequency information. for detection of emerging trends, either a simple criterion such as frequency change was used, or an overall comparison was made against a training data. We note that in order to show most salient trends detected among many possibilities, it is critical to devise a ranking function. To this end, we define four properties(change, persistency, stability and volume) of trend lines drawn from frequency information, to quantify various aspects of trends, and propose a method by which trend lines can be ranked. The properties are examined individually and in combination in a series of experiments for their validity using the ranking algorithm. The results show that a judicious combination of the four properties is a better indicator for salient trends than any single criterion used in the past for ranking or detecting emerging trends.

Increment Method of Radar Range using Noise Reduction (잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법)

  • Lee, Dong-Hyo;Chung, Daewon;Shin, Hanseop;Yang, Hyung-Mo;Kim, Sangdong;Kim, Bong-seok;Jin, Youngseok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

A Study on Controlling IPTV Interface Based on Tracking of Face and Eye Positions (얼굴 및 눈 위치 추적을 통한 IPTV 화면 인터페이스 제어에 관한 연구)

  • Lee, Won-Oh;Lee, Eui-Chul;Park, Kang-Ryoung;Lee, Hee-Kyung;Park, Min-Sik;Lee, Han-Kyu;Hong, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.930-939
    • /
    • 2010
  • Recently, many researches for making more comfortable input device based on gaze detection have been vigorously performed in human computer interaction. However, these previous researches are difficult to be used in IPTV environment because these methods need additional wearing devices or do not work at a distance. To overcome these problems, we propose a new way of controlling IPTV interface by using a detected face and eye positions in single static camera. And although face or eyes are not detected successfully by using Adaboost algorithm, we can control IPTV interface by using motion vectors calculated by pyramidal KLT (Kanade-Lucas-Tomasi) feature tracker. These are two novelties of our research compared to previous works. This research has following advantages. Different from previous research, the proposed method can be used at a distance about 2m. Since the proposed method does not require a user to wear additional equipments, there is no limitation of face movement and it has high convenience. Experimental results showed that the proposed method could be operated at real-time speed of 15 frames per second. Wd confirmed that the previous input device could be sufficiently replaced by the proposed method.

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

User-independent blockchain donation system

  • Sang-Dong Sul;Su-Jeong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.113-123
    • /
    • 2023
  • This paper introduces the Cherry system, a user-independent blockchain donation system. This is a procedure that is delivered to the beneficiary's bank account through a virtual account when a donor makes a donation, so there is no difference from the existing donation delivery method from the user's point of view However, within the blockchain, Cherry Points, a virtual currency based on the user ID, are issued and delivered to the beneficiary, while all transactions and the beneficiary's usage history are managed on the blockchain. By adopting this method, there was an improvement in blockchain performance, with transaction processing exceeding 1,000 TPS in typical transaction condition and service completion within 21.3 seconds. By applying the automatic influence control algorithm to this system, the influence according to stake, which is an individual donation, is greatly reduced to 0.3 after 2 months, thereby concentrating influence could be controlled automatically. In addition, it was designed to enable micro tracking by adding a tracking function by timestamp to the donation ledger for each individual ID, which greatly improved the transparency in the use of donations. From a service perspective, existing blockchain donation systems were handled as limited donation delivery methods. Since it is a direct service in a user-independent method, convenience has been greatly improved by delivering donations in various forms.

Location Prediction of Mobile Objects using the Cubic Spline Interpolation (3차 스플라인 보간법을 이용한 이동 객체의 위치 추정)

  • 안윤애;박정석;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.479-491
    • /
    • 2004
  • Location information of mobile objects is applied to vehicle tracking, digital battlefields, location based services, and telematics. Their location coordinates are periodically measured and stored in the application systems. The linear function is mainly used to estimate the location information that is not in the system at the query time point. However, a new method is needed to improve uncertainties of the location representation, because the location estimation by linear function induces the estimation error. This paper proposes an application method of the cubic spline interpolation in order to reduce deviation of the location estimation by linear function. First, we define location information of the mobile object moving on the two-dimensional space. Next, we apply the cubic spline interpolation to location estimation of the proposed data model and describe algorithm of the estimation operation. Finally, the precision of this estimation operation model is experimented. The experimentation comes out more accurate results than the method by linear function, although the proposed location estimation function uses the small amount of information. The proposed method has an advantage that drops the cost of data storage space and communication for the management of location information of the mobile objects.

Trajectory Optimization and the Control of a Re-entry Vehicle during TAEM Phase using Artificial Neural Network (재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Min, Chan-Oh;Cho, Sung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • This paper describes a result of the guidance and control for re-entry vehicle during TAEM phase. TAEM phase (Terminal Aerial Energy Management phase) has many conditions, such as density, velocity, and so on. Under these conditions, we have optimized trajectory and other states for guidance in TAEM phase. The optimized states consist of 7 variables, down-range, cross range, altitude, velocity, flight path angle, vehicle's azimuth and flight range. We obtained the optimized reference trajectory by DIDO tool, and used feedback linearization with neural network for control re-entry vehicle. By back propagation algorithm, vehicle dynamics is approximated to real one. New command can be decided using the approximated dynamics, delayed command input and plant output, NARMA-L2. The result by this control law shows a good performance of tracking onto the reference trajectory.