• Title/Summary/Keyword: Tracking Lanes

Search Result 21, Processing Time 0.019 seconds

An Algorithm for Collecting Traffic Information by Vehicle Tracking Method from CCTV Camera Images on the Highway (고속도로변 폐쇄회로 카메라 영상에서 트래킹에 의한 교통정보수집 알고리즘)

  • Lee In Jung;Min Joan Young;Jang Young Sang
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.169-179
    • /
    • 2004
  • There are many inductive loop detectors under the highways in Korea. Among the other detectors, some are image detectors. Almost all image detectors are focused one or two lane of the road and are measuring traffic information. This paper proposes to an algorithm for detecting traffic information automatically from CCTV camera images installed on the highway. The information which is counted in one lane or two contains some critical errors by occlusion frequently in case of passing larger vehicles. In this paper, we use a tracking algorithm in which the detection area include all lanes, then the traffic informations are collected from the vehicles individually using difference images in this detection area. This tracking algorithm is better than lane by lane detecting algorithm. The experiment have been conducted two different real road scenes for 20 minutes. For the experiments, the images are provided with CCTV camera which was installed at Kiheung Interchange upstream of Kyongbu highway, and video recording images at Chungkye Tunnel. For image processing, images captured by frame-grabber board 30 frames per second, 640${\times}$480 pixels resolution and 256 gray-levels to reduce the total amount of data to be Interpreted.

  • PDF

LMI-BASED $H_{\infty}$ LATERAL CONTROL OF AN AUTONOMUS VEHICLE BY LOOK-AHEAD SENSING

  • Kim, C.S.;Kim, S.Y.;Ryu, J.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.609-618
    • /
    • 2006
  • This paper presents the lateral control of an autonomous vehicle by using a look-ahead sensing system. In look-ahead sensing by an absolute positioning system, a reference lane, constructed by straight lanes or circular lanes, was switched by a segment switching algorithm. To cope with sensor noise and modeling uncertainty, a robust LMI-based $H_{\infty}$ lateral controller was designed by the feedback of lateral offset and yaw angle error at the vehicle look-ahead. In order to verify the safety and the performance of lateral control, a scaled-down vehicle was developed and the location of the vehicle was detected by using an ultrasonic local positioning system. In the mechatronic scaled-down vehicle, the lateral model and parameters are verified and estimated by a J-turn test. For the lane change and reference lane tracking, the lateral controllers are used experimentally. The experimental results show that the $H_{\infty}$ controller is robust and has better performance compared with look-down sensing.

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Estimation of Urban Traffic State Using Black Box Camera (차량 블랙박스 카메라를 이용한 도시부 교통상태 추정)

  • Haechan Cho;Yeohwan Yoon;Hwasoo Yeo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.133-146
    • /
    • 2023
  • Traffic states in urban areas are essential to implement effective traffic operation and traffic control. However, installing traffic sensors on numerous road sections is extremely expensive. Accordingly, estimating the traffic state using a vehicle-mounted camera, which shows a high penetration rate, is a more effective solution. However, the previously proposed methodology using object tracking or optical flow has a high computational cost and requires consecutive frames to obtain traffic states. Accordingly, we propose a method to detect vehicles and lanes by object detection networks and set the region between lanes as a region of interest to estimate the traffic density of the corresponding area. The proposed method only uses less computationally expensive object detection models and can estimate traffic states from sampled frames rather than consecutive frames. In addition, the traffic density estimation accuracy was over 90% on the black box videos collected from two buses having different characteristics.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm (YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.563-570
    • /
    • 2024
  • This paper proposes a method to recognize and track drivable lane areas to assist the driver. The main topic is designing a deep-based network that predicts drivable road areas using computer vision and deep learning technology based on images acquired in real time through a camera installed in the center of the windshield inside the vehicle. This study aims to develop a new model trained with data directly obtained from cameras using the YOLO algorithm. It is expected to play a role in assisting the driver's driving by visualizing the exact location of the vehicle on the actual road consistent with the actual image and displaying and tracking the drivable lane area. As a result of the experiment, it was possible to track the drivable road area in most cases, but in bad weather such as heavy rain at night, there were cases where lanes were not accurately recognized, so improvement in model performance is needed to solve this problem.

FPGA-DSP Based Implementation of Lane and Vehicle Detection (FPGA와 DSP를 이용한 실시간 차선 및 차량인식 시스템 구현)

  • Kim, Il-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.727-737
    • /
    • 2011
  • This paper presents an implementation scheme of real-time lane and vehicle detection system with FPGA and DSP. In this type of implementation, defining the functionality of each device in efficient manner is of crucial importance. The FPGA is in charge of extracting features from input image sequences in reduced form, and the features are provided to the DSP so that tracking lanes and vehicles are performed based on them. In addition, a way of seamless interconnection between those devices is presented. The experimental results show that the system is able to process at least 15 frames per second for video image sequences with size of $640{\times}480$.

Lane Departure Warning System Using Top-view Space (Top-view 공간을 활용한 차선 이탈 경보 시스템)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.815-818
    • /
    • 2016
  • Forward collision warning systems(FCWS) and lane departure warning systems(LDWS) need regions of interest for detecting lanes and objects as road regions. In general, the lane departure warning system using a vehicle front camera is tracking a lane curve using RANSAC or the like in the form of a straight line obtained image are compared with the center of the vehicle. This algorithm has weaknesses that requires a wide range of the lane being vulnerable to the curve. This paper presents an algorithm that checks whether the current lane departure by car from the Top-view space. The algorithm also can check whether the vehicle in the lane departure of the narrow range, and shows the result that is almost not affected by noise.

  • PDF

Lane Detection Algorithm using Morphology and Color Information (형태학과 색상 정보를 이용한 차선 인식 알고리즘)

  • Bae, Chan-Su;Lee, Jong-Hwa;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.15-24
    • /
    • 2011
  • As increase awareness of intelligent vehicle systems, many kinds of lane detection algorithm have been proposed. General boundary extraction method can bring good result in detection of lane on the road. But a shadow on the road, or other boundaries, such as horizontal lines can be detected. The method using morphological operations was used to extract information about Lane. By applying HSV color model for color information of lane, the candidate of the lane can be extracted. In this paper, the lane detection region was set by Hough transformation using the candidate of the lane. By extracting lane markings on the lane detection region, lane detection method can bring good result.

A Study on the Autonomous Driving Algorithm Using Bluetooth and Rasberry Pi (블루투스 무선통신과 라즈베리파이를 이용한 자율주행 알고리즘에 대한 연구)

  • Kim, Ye-Ji;Kim, Hyeon-Woong;Nam, Hye-Won;Lee, Nyeon-Yong;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.689-698
    • /
    • 2021
  • In this paper, lane recognition, steering control and speed control algorithms were developed using Bluetooth wireless communication and image processing techniques. Instead of recognizing road traffic signals based on image processing techniques, a methodology for recognizing the permissible road speed by receiving speed codes from electronic traffic signals using Bluetooth wireless communication was developed. In addition, a steering control algorithm based on PWM control that tracks the lanes using the Canny algorithm and Hough transform was developed. A vehicle prototype and a driving test track were developed to prove the accuracy of the developed algorithm. Raspberry Pi and Arduino were applied as main control devices for steering control and speed control, respectively. Also, Python and OpenCV were used as implementation languages. The effectiveness of the proposed methodology was confirmed by demonstrating effectiveness in the lane tracking and driving control evaluation experiments using a vehicle prototypes and a test track.