Acknowledgement
이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (2022-0-00784, 이동형 인프라 영상 센서를 활용한 지능형 도로 및 교통 상황 탐지 기술 개발). 이 연구는 2022년도 한국건설기술연구원의 지원을 받아 수행된 연구임 (이동형 영상 기반 지능형 도로 상황 분석 시스템 연구).
References
- Benkraouda, O., Thodi, B., Yeo, H., Menendez, M. and Jabari, S.(2020), "Traffic data imputation using deep convolutional neural networks", IEEE Access, vol. 8, pp.104740-104752. https://doi.org/10.1109/ACCESS.2020.2999662
- Chen, X., Yin, J., Tang, K., Tian, Y. and Sun, J.(2022), "Vehicle Trajectory Reconstruction at Signalized Intersections Under Connected and Automated Vehicle Environment", IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp.17986-18000. https://doi.org/10.1109/TITS.2022.3150577
- Geroliminis, N. and Daganzo, C. F.(2007), "Macroscopic modeling of traffic in cities", Transportation Research Board 86th Annual Meeting.
- Gokasar, I. and Timurogullari, A.(2021), "Real-time prediction of traffic density with deep learning using computer vision and traffic event information", 2021 International Conference on Innovations in Intelligent Systems and Applications.
- Gupte, S., Masoud, O., Martin, R. and Papanikolopoulos, N.(2002), "Detection and classification of vehicles", IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1, pp.37-47. https://doi.org/10.1109/6979.994794
- Kar, G., Jain, S., Gruteser, M., Bai, F. and Govindan, R.(2017), "Real-time traffic estimation at vehicular edge nodes", IEEE/CVF International Conference on Computer Vision, pp.1-13.
- Kim, M., Jeong, D. and Kim, H.(2019), "A study on estimation of traffic flow using image-based vehicle identification technology", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 18, no. 6, pp.110-123. https://doi.org/10.12815/kits.2019.18.6.110
- Kim, S., Anagnostopoulos, G., Barmpounakis, E. and Geroliminis, N.(2023), "Visual extensions and anomaly detection in the pNEUMA experiment with a swarm of drones", Transportation Research Part C: Emerging Technologies, vol. 147, p.103966.
- Lee, H., Lee, J. and Chung, Y.(2022), "Traffic density estimation using vehicle sensor data", Journal of Intelligent Transportation Systems, vol. 26, no. 6, pp.675-689. https://doi.org/10.1080/15472450.2021.1966626
- Magee, D. R.(2004), "Tracking multiple vehicles using foreground, background and motion models", Image and Vision Computing, vol. 22, no. 2, pp.143-155. https://doi.org/10.1016/S0262-8856(03)00145-8
- Mehran, B., Kuwahara, M. and Naznin, F.(2012), "Implementing kinematic wave theory to reconstruct vehicle trajectories from fixed and probe sensor data", Transportation Research Part C: Emerging Technologies, vol. 20, no. 1, pp.144-163. https://doi.org/10.1016/j.trc.2011.05.006
- Nantes, A., Ngoduy, D., Bhaskara, A., Miska, M. and Chung, E.(2016), "Real-time traffic state estimation in urban corridors from heterogeneous data", Transportation Research Part C: Emerging Technologies, vol. 66, pp.99-118. https://doi.org/10.1016/j.trc.2015.07.005
- Pandey, A. and Biswas, S.(2022), "Assessment of Level of Service on urban roads: A revisit to past studies", Advances in Transportation Studies, vol. 57.
- Parisot, C., Meessen, J., Carincotte, C. and Desurmont, X.(2008), "Real-time road traffic classification using on-board bus video camera", 2008 11th International IEEE Conference on Intelligent Transportation Systems, pp.189-196.
- Park, B., Kim, T., Yang, I., Heo, J. and Son, B.(2015), "A method for measuring accurate traffic density by aerial photography", Journal of Advanced Transportation, vol. 49, no. 4, pp.568-580. https://doi.org/10.1002/atr.1288
- Schuricht, P., Michler, O. and Baker, B.(2011), "Efficiency-increasing driver assistance at signalized intersections using predictive traffic state estimation", 2011 14th International IEEE Conference on Intelligent Transportation Systems, pp.347-352.
- Shahrbabaki, M., Safavi, A., Papageorgiou, M. and Papamichail, I.(2018), "A data fusion approach for real-time traffic state estimation in urban signalized links", Transportation Research Part C: Emerging Technologies, vol. 92, pp.525-548. https://doi.org/10.1016/j.trc.2018.05.020
- Smulders, S.(1990), "Control of freeway traffic flow by variable speed signs", Transportation Research Part B: Methodological, vol. 24, no. 2, pp.111-132. https://doi.org/10.1016/0191-2615(90)90023-R
- Sun, Z. and Ban, X.(2013), "Vehicle trajectory reconstruction for signalized intersections using mobile traffic sensors", Transportation Research Part C: Emerging Technologies, vol. 36, pp.268-283. https://doi.org/10.1016/j.trc.2013.09.002
- Sun, Z., Bebis, G. and Miller, R.(2002), "Improving the performance of on-road vehicle detection by combining gabor and wavelet features", IEEE 5th International Conference on Intelligent Transportation Systems, pp.130-135.
- Tabelini, L., Berriel, R., Paixao, T. M., Badue, C., Souza, A. F. and Oliveira, T.(2021), "Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection", IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.294-302.
- Thodi, B., Khan, S., Jabari, E. and Menendez, M.(2022), "Incorporating kinematic wave theory into a deep learning method for high-resolution traffic speed estimation", IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp.17849-17862. https://doi.org/10.1109/TITS.2022.3157439
- Ultralytics, https://github.com/ultralytics/yolov5, 2022.07.02.
- Umair, M., Farooq, M., Raza, R., Chen, Q. and Abdulhai, B.(2021), "Efficient Video-based Vehicle Queue Length Estimation using Computer Vision and Deep Learning for an Urban Traffic Scenario", Processes, vol. 9, no. 10, p.1786.
- Xie, X., Lint, H. and Verbraeck, A.(2018), "A generic data assimilation framework for vehicle trajectory reconstruction on signalized urban arterials using particle filters", Transportation Research Part C: Emerging Technologies, vol. 92, pp.364-391. https://doi.org/10.1016/j.trc.2018.05.009
- Zheng, T., Huang, Y., Liu, Y., Tang, W., Yang, W., Cai, D. and He, X.(2022), "CLRNet: Cross Layer Refinement Network for Lane Detection", IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.898-907.