• 제목/요약/키워드: Tracking Control Method

검색결과 1,615건 처리시간 0.03초

Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Haruna, Junnosuke
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.277-286
    • /
    • 2016
  • This paper offers two Maximum Power Point Tracking (MPPT) systems for Photovoltaic (PV) applications. The first MPPT method is based on a fixed frequency Model Predictive Control (MPC). The second MPPT technique is based on the Predictive Hysteresis Control (PHC). An experimental demonstration shows that the proposed techniques are fast, accurate and robust in tracking the maximum power under different environmental conditions. A DC/DC converter with a high voltage gain is obligatory to track PV applications at the maximum power and to boost a low voltage to a higher voltage level. For this purpose, a high gain Switched Inductor Quadratic Boost Converter (SIQBC) for PV applications is presented in this paper. The proposed converter has a higher gain than the other transformerless topologies in the literature. It is shown that at a high gain the proposed SIQBC has moderate efficiency.

학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종 (Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion)

  • 김남국
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

A Frequency-Tracking Method Based on a SOGI-PLL for Wireless Power Transfer Systems to Assure Operation in the Resonant State

  • Tan, Ping-an;He, Haibing;Gao, Xieping
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1056-1066
    • /
    • 2016
  • Wireless power transfer (WPT) technology is now recognized as an efficient means of transferring power without physical contact. However, frequency detuning will greatly reduce the transmission power and efficiency of a WPT system. To overcome the difficulties associated with the traditional frequency-tracking methods, this paper proposes a Direct Phase Control (DPC) approach, based on the Second-Order Generalized Integrator Phase-Locked Loop (SOGI-PLL), to provide accurate frequency-tracking for WPT systems. The DPC determines the phase difference between the output voltage and current of the inverter in WPT systems, and the SOGI-PLL provides the phase of the resonant current for dynamically adjusting the output voltage frequency of the inverter. Further, the stability of this control method is analyzed using the linear system theory. The performance of the proposed frequency-tracking method is investigated under various operating conditions. Simulation and experimental results convincingly demonstrate that the proposed technique will track the quasi-resonant frequency automatically, and that the ZVS operation can be achieved.

적응 제어 시스템의 과도상태 성능 개선을 위한 제어기 설계 (A modified adaptive control method for improving transient performance)

  • 서원기;이진수
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.124-131
    • /
    • 1997
  • This paper presents a modified adaptive control scheme that improves the transient performance of the overall system while maintaining the asymptotic convergence of the output error. The proposed control scheme is characterized as the added outer dynamic feedback loop on the conventional adaptive control scheme. This control scheme enables various robust control methods that were developed for standard model reference adaptive controllers to be applied to the proposed controller. In contrast with the modified adaptive controllers that use augmented errors to provide additional dynamic feedback, the proposed controller uses tracking error directly, thereby reducing the tracking error significantly in the transient state and making the error insensitive to noise.

  • PDF

비중앙 집중식 강성 적응 제어법을 통한 산업용 로봇 궤도추적제어 (Robust Decentralized Adaptive Controller for Trajectory Tracking Control of Uncertain Robotic Manipulators)

  • 유삼상
    • 수산해양기술연구
    • /
    • 제30권4호
    • /
    • pp.329-340
    • /
    • 1994
  • This paper presents a dynamic compensation methodology for robust trajectory tracking control of uncertain robot manipulators. To improve tracking performance of the system, a full model-based feedforward compensation with continuous VS-type robust control is developed in this paper(i.e,. robust decentralized adaptive control scheme). Since possible bounds of uncertainties are unknown, the adaptive bounds of the robust control is used to directly estimate the uncertainty bounds(instead of estimating manipulator parameters as in centralized adaptive control0. The global stability and robustness issues of the proposed control algorithm have been investigated extensively and rigorously via a Lyapunov method. The presented control algorithm guarantees that all system responses are uniformly ultimately bounded. Thus, it is shown that the control system is evaluated to be highly robust with respect to significant uncertainties.

  • PDF

음영에 의한 손실을 고려한 태양광 발전 추적 시스템 (Photovoltaic tracking system considered loss by shadow)

  • 최정식;고재섭;정철호;김도연;정병진;정동화
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance

  • PDF

고속 텝 가공(tapping)을 위한 자동 이득(gain) 조정기 (Auto fitting of motor gains for high speed tapping)

  • 최진욱;유완식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.660-663
    • /
    • 1996
  • There has been many activity to increase accuracy in machining center by reducing tracking error. The tracking error can cause bad effect in high speed rigid tapping in which syncronization servo motor with spindle is relatively important. To reduce tracking error, feed forward control has been used, but no method is provided knowing motor dynamics, force variation, etc. In this paper, we observe that, despite of tracking error of relevant axis, high speed tapping could be possible by reducing contour error of axis to be syncronized. We present the method to increase accuracy in high speed tapping to minimize contour error by automatically fitting gains of servo and spindle.

  • PDF

Design of Multi-mode Tracking Algorithm for DBS Receiving Antenna on Shipboard

  • Choi, Choel;Kim, Young-Ho;Lee, Sung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.121.3-121
    • /
    • 2001
  • The movement of a ship is important for DBS(Direct Broadcasting Satellite) Receiving Antenna control algorithm design on shipboard. Especially, turning of ship is essential factor to affect the angle change of azimuth and elevation. Therefore, to track the satellite stably, we need the tracking method considering turning rate of ship. In this paper, we propose an effective satellite tracking algorithm for DBS receiving antenna on shipboard. In the proposed method, when a ship is turned, it selects one of the Multi tracking modes - Normal mode, Low speed mode, Middle speed mode and High speed mode - according as turning rate to be calculated by using Gyro sensor.

  • PDF

표적 크기 추정 기반의 표적 추적 알고리듬 연구 (A Study on the Target Tracking Algorithm based on the Target Size Estimation)

  • 정윤식;이상석;노신백
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.29-36
    • /
    • 2014
  • In this paper, a novel MBE (Model Based target size Estimator) is presented for SDIIR (Strap Down Imaging Infrared) seekers. The target tracking requires the target size information for which residual range between target and missile should be provided. Unfortunately, in general, the missile with passive sensor such as IIR (Imaging Infrared), CCD (Coupled Charging Device) cannot obtain range information. To overcome the problem, the proposed method enables the SDIIR seeker to estimates target size by using target size model and track the target. The performance of proposed method is tested at IIR target tracking of target intercept scenario. The experiment results show that the proposed algorithm has the relatively good performance.