• Title/Summary/Keyword: Tracking Control Method

Search Result 1,614, Processing Time 0.022 seconds

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF

Robust Trajectory Tracking Control of Mecanum Wheeled AGV Using State Space Disturbance Observer Based Impedance Control and ISMC (상태 공간 외란관측기 기반의 임피던스 제어와 ISMC를 이용한 메카넘 휠 AGV의 강인 궤도 추적 제어)

  • Hyoseok Cheon;Seungkyu Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Auto Guided Vehicle (AGV) equipped with mecanum wheels can move in all directions, unlike ordinary wheeled AGVs. In this paper, we propose a robust trejectory tracking control method for the mecanum wheeled AGVs in the presence of disturbances. It is constructed by combining impedance control with Integral Sliding Mode Control (ISMC), which shows robust performance against disturbances, and adding a disturbance observer (DOB) that estimates and removes disturbances. Simulation result using MATLAB/SIMULINK shows that the proposed control method has robust performance in tracking the reference trajectory under the circumstance with disturbance. The control performance is further improved when the disturbance observer is additionally used. In addition, the performance of the proposed control method was verified through experiment. It shows the result of tracking the set trajectory well.

A Hybrid Solar Tracking System using Weather Condition Estimates with a Vision Camera and GPS (날씨인식 결과를 이용한 GPS 와 비전센서기반 하이브리드 방식의 태양추적 시스템 개발)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.557-562
    • /
    • 2014
  • It is well known that solar tracking systems can increase the efficiency of exiting solar panels significantly. In this paper, a hybrid solar tracking system has been developed by using both astronomical estimates from a GPS and the image processing results of a camera vision system. A decision making process is also proposed to distinguish current weather conditions using camera images. Based on the decision making results, the proposed hybrid tracking system switches two tracking control methods. The one control method is based on astronomical estimates of the current solar position. And the other control method is based on the solar image processing result. The developed hybrid solar tracking system is implemented on an experimental platform and the performance of the developed control methods are verified.

Track-following Control under Disk Surface Defect of Optical Disk Drive Systems (광디스크 드라이브의 디스크 표면 결함에 대한 트래킹 제어)

  • Jeong, Dong-Seul;Lee, Joon-Seong;Chung, Chung-Choo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.56-64
    • /
    • 2006
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives to reject disk runout was recently proposed based on both Coprime Factorization(CF) and Zero Phase Error Tracking(ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo systems can detect only racking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Therefore, it is very effective in runout control. Furthermore, this method can be applied to defective optical disk like surface defects on disk. Numerical simulation and experimental result show the proposed method effective.

  • PDF

Study for Tracking Control of Autonomous Underwater Vehicle (AUV의 궤적제어에 관한 연구)

  • 유휘룡;김성근;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1994
  • This paper presents a design method of multivariable robust servo system for tracking control system for AUV(Autonomous Underwater Vehicle). In order to obtain the basic data for the design of the tracking control system, the control algorithm is evaluated in the view of computer simulation results. The tracking control is carried out for an AUV with 2 main thrusters, 2 side thrusters and 2 thrusters for the movement to up-down direction. The results of computer simulation show that the proposed multivariable servo system design method is an efficient method for the control performance of tracking control system of AUV under severe underwater environment.

  • PDF

Robust Servo System for Optical Disk Drive Systems (광디스크 드라이브를 위한 강인 제어기 설계)

  • Park Bum-Ho;Chung Chung Choo;Baek Jong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives was proposed recently based on both Coprime Factorization (CF) and Zero Phase Error Tracking (ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo system can detect only tracking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Numerical simulation results show that the proposed method is effective.

Application of Neural Network Control Algorithm and Maximum Power Tracking of Sun Photocell using Sunlight Sensor (태앙광 센서에 의한 태앙광 전지의 최대전력추적과 신경회로망 제어알고리즘 적용)

  • Yoo, Seok-Ju;Lee, Seong-Su;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, high efficiency of photocell power generation is steady needed to sun tracking method. However sun tracking method is not widely extended by insufficiency of tracking technology. As method of solving this problem, this paper applied sunlight sensor and neural network control algorithm for maximum power tracking of sun photocell. Sun tracking sensor consists of one upright square pole and form light sensor of east, west, south, north on flat board. Sun tracking dual axes control is operated respectively by two motor. Motor control input is calculated by neural network control algorithm. The function of proposed control method is verified by sun tracking experiment of photocell generation. The sun tracking method of this paper is increased 32[%] efficiency more than fixed method.

Unmanned Ground Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance (충돌회피 및 차선추적을 위한 무인자동차의 제어 및 모델링)

  • Yu, Hwan-Shin;Kim, Sang-Gyum
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.359-370
    • /
    • 2007
  • Lane tracking and obstacle avoidance are considered two of the key technologies on an unmanned ground vehicle system. In this paper, we propose a method of lane tracking and obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. First, obstacle avoidance consists of two parts: a longitudinal control system for acceleration and deceleration and a lateral control system for steering control. Each system is used for unmanned ground vehicle control, which notes the vehicle's location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacle and perform obstacle avoidance on the road, which involves vehicle velocity. Second, we explain a method of lane tracking by means of a vision system, which consists of two parts: First, vehicle control is included in the road model through lateral and longitudinal control. Second, the image processing method deals with the lane tracking method, the image processing algorithm, and the filtering method. Finally, in this paper, we propose a method for vehicle control, modeling, lane tracking, and obstacle avoidance, which are confirmed through vehicles tests.

  • PDF

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF