• Title/Summary/Keyword: Tracking Control Method

Search Result 1,613, Processing Time 0.03 seconds

Using a Disturbance Observer for Eccentricity Compensation in Optical storage systems

  • Kim, Kyung-Soo;Seong, Pyo-Hong;Han, Yong-Hee;Heuigi Son
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.3-76
    • /
    • 2001
  • In this paper, an adaptive disturbance compensation technique is used in a tracking problem, under which the tracking reference is unknown. Based on a simple disturbance observer that effectively estimates the low frequency components of disturbance, the feedforward compensation is applied in addition to the conventional feedback control. Under the proposed compensation method, sensitivity analysis is given to illustrate the effectiveness. Finally, the proposed method is applied to the tracking problem in an optical storage system.

  • PDF

A Study on the Precise Tracking Control in the Repetitive Manufacturing Process (반복 생산 공정에서의 정밀 추종제어에 관한 연구)

  • 신춘식;안영주;변기식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.112-118
    • /
    • 2000
  • A modified repetitive control is formulated and analyzed in the discrete-time domain. Sufficient conditions for the stability of a class of repetitive controllers are given by means of the regeneration spectrum method. When a periodic signal input is drived into the two-mass-spring plant, the performance of the proposed controller which comprises a low-pass filter and two feed-forward compensators, turns out highly accurate by comparing the tracking result from the conventional LQ controller.

  • PDF

Vision-based Line Tracking and steering control of AGVs

  • Lee, Hyeon-Ho;Lee, Chang-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.180.4-180
    • /
    • 2001
  • This paper describes a vision-based line-tracking system for AGV and steering control scheme. For detect the guideline quickly and exactly, We use four line-points which complement and predict each other. This low-cost line-tracking system is efficiently using PC-based real-time vision processing, Steering control is studied through an steering controller with guide-line angle and line-point error. This method is tested via a typical AGV with a single camera in laboratory environment.

  • PDF

Target Tracking Control of vision sensor using Fuzzy Algorithm (퍼지 알고리즘을 이용한 비젼 센서의 목표물 추적 제어)

  • Lee, Hong-Hee;Han, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.583-586
    • /
    • 1995
  • In this paper, a nor fuzzy control algorithm for the target tracking system is proposed, and its characteristics are analyzed and compared with those of the traditional PID controller. Fuzzy rules are generated experimentally using Mamdani's minimum operation and the center of area method. The experimental results prove that the proposed fuzzy algorithm is excellent in our tracking system and its performance is superior to that of the PID controller.

  • PDF

Sinusoidal Current Tracking Inverter Control with Neural Networks (신경회로망에 의한 정현파 전류 추종 인버어터의 제어)

  • 배상준;이달해;김동희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.219-226
    • /
    • 1994
  • Sinusoidal current tracking inverters have substantial advantages in high performance acdrive systems and various control strategies for the inverter have been proposed by several researchers. This paper develops a sinusoidal current tracking inverter with neural networks. The neural network are trained to follow a set of reference current waveforms by erro back propagation algorithm and the trained neural networks are applied to the current control. We compare neural networks method with conventional current control methods (fixed band and sinusiidal band hystersis methods) and simulation results are presented.

  • PDF

Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder (공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어)

  • Lee, Su-Han;Jang, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

Trajectory Control of a Hydraulic Excavator using Adaptive-Robust Control Method (적응-강인 제어기법을 이용한 유압 굴삭기의 궤적 제어)

  • 최종환;김용석;김승수;양순용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.186-194
    • /
    • 2003
  • This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system fir parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

  • PDF

Trajectory Tracking Control System Design of Mobile Robot Based on WIPDC and ISMC (하중적분 PDC와 ISMC를 이용한 이동 로봇의 궤도 추적 제어 시스템)

  • Baek, Du-San;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1337-1338
    • /
    • 2015
  • In this paper, a new control technique using WIPDC(Weighted Integral Parallel Distributed Compensation) and ISMC(Integral Sliding Mode Control) is proposed for high performance and robust trajectory tracking control of a wheeled mobile robot. The WIPDC reduces the steady-state error by adding a weighted integral controller to the PDC. So, the trajectory tracking control using the WIPDC can obtain more accurate control performance than the PDC. And the ISMC based control input gives the mobile robot to preserve the system dynamics controlled by the WIPDC control input in spite of external disturbances. Therefore, the proposed control method shows a robust and precise trajectory tracking performance.

  • PDF

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF