• Title/Summary/Keyword: Track-to-Track Fusion

Search Result 65, Processing Time 0.023 seconds

Performance Evaluation of Track-to-track Association and fusion in Distributed Multiple Radar Tracking (다중레이다 분산형 추적의 항적연관 및 융합 성능정가)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.38-46
    • /
    • 2008
  • A distributed system for tracking multiple targets with a pair of multifunction radars is proposed and implemented. The system performs track-to-track association and track-to-track fusion at the fusion center to form fused tracks. The association and fusion are performed using target state information linked via communication nodes from a radar at a remote location. Many factors can affect the track-to-track association and fusion performances. They include delays in data transmission buffer of the remote radar, the error in estimating time-stamp of the remote radar, and the gating in track-to-track association. The effects on association and fusion performances due to these factors are investigated through extensive numerical simulations.

Track-to-Track Information Fusion using 2D and 3D Radars (2D와 3D 레이더를 이용한 정보융합 기법 연구)

  • Yoo, Dong-Gil;Song, Taek-Lyul;Kim, Da-Sol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.863-870
    • /
    • 2012
  • This paper presents a track-to-tack information fusion algorithm using tracks of 2D and 3D radars. Before track fusion, it is needed to match the dimension of the tracks, as the tracks generated by 2D and 3D radars have different dimensions. This paper suggests how the 2D tracks are converted to the 3D tracks for track fusion. Through simulation studies, we can verify that the performance of the proposed method.

A Survey on Track Fusion for Radar Target Tracking (레이다 항적융합 연구의 최근 동향)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An architecture for multiple radar tracking systems can be broadly categorized according to the methods in which the tracking functions are performed : central-level tracking and distributed tracking. In the central-level tracking, target tracking is performed using observations from all radar systems. This architecture provides optimal solution to target tracking. In distributed tracking, tracking is performed at each radar system and the composite track information is formed through track fusion integrating multiple radar-level tracks. Track-to-track fusion and track-to-track association are required to perform in this architecture. In this paper, issues and recent research on the two tracking architectures are surveyed.

A Study on Multi Sensor Track Fusion Algorithm for Naval Combat System (함정 전투체계 표적 융합 정확도 향상을 위한 알고리즘 연구)

  • Jung, Young-Ran
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.34-42
    • /
    • 2007
  • It is very important for the combat system to process extensive data exactly at short time for the better situation awareness compared with the threats in these days. This paper suggests to add radial velocity on the decision factor of sensor data fusion in the existing algorithm for the accuracy enhancement of the sensor data fusion in the combat system.

Short Range Target Tracking Based on Data Fusion Method Using Asynchronous Dissimilar Sensors (비동기 이종 센서를 이용한 데이터 융합기반 근거리 표적 추적기법)

  • Lee, Eui-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.335-343
    • /
    • 2012
  • This paper presents an target tracking algorithm for fusion of radar and infrared(IR) sensor measurement data. Generally, fusion methods with Kalman filter assume that processing data obtained by radar and IR sensor are synchronized. It has much limitation to apply the fusion methods to real systems. A key point which is taken into account in the proposed algorithm is the fact that two asynchronous dissimilar data are fused by compensating the time difference of the measurements using radar's ranges and track state vectors. The proposed fusion algorithm in the paper is evaluated via a computer simulation with the existing track fusion and measurement fusion methods.

Structure of Data Fusion and Nonlinear Statistical Track Data Fusion in Cooperative Engagement Capability (협동교전능력을 위한 자료융합 구조와 비선형 통계적 트랙 융합 기법)

  • Jung, Hyoyoung;Byun, Jaeuk;Lee, Saewoom;Kim, Gi-Sung;Kim, Kiseon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.17-27
    • /
    • 2014
  • As the importance of Cooperative Engagement Capability and network-centric warfare has been dramatically increasing, it is necessary to develop distributed tracking systems. Under the development of distributed tracking systems, it requires tracking filters and data fusion theory for nonlinear systems. Therefore, in this paper, the problem of nonlinear track fusion, which is suitable for distributed networks, is formulated, four algorithms to solve the problem of nonlinear track fusion are introduced, and performance of introduced algorithms are analyzed. It is a main problem of nonlinear track fusion that cross-covarinaces among multiple platforms are unknown. Thus, in order to solve the problem, two techniques are introduced; a simplification technique and a approximation technique. The simplification technique that help to ignore cross-covariances includes two algorithms, i.e. the sample mean algorithm and the Millman formula algorithm, and the approximation technique to obtain approximated cross-covariances utilizes two approaches, by using analytical linearization and statistical linearization based on the sigma point approach. In simulations, BCS fusion is the most efficient scheme because it reduces RMSE by approximating cross-covariances with low complexity.

Underwater Target Discrimination using Sequential Testings and Data Fusion (순차 검증과 자료융합을 이용한 수중 표적 판별)

  • Kwak, Eun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.657-659
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a target under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of both the sequences of processed waveform signature and the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. Numerical experiments on various scenarios show that the proposed algorithm discriminates the target faster with a higher probability of success than the algorithm using only the innovation sequences from extended Kalman filters.

  • PDF

Probabilistic Head Tracking Based on Cascaded Condensation Filtering (순차적 파티클 필터를 이용한 다중증거기반 얼굴추적)

  • Kim, Hyun-Woo;Kee, Seok-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.

Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion (GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선)

  • Song, Ha-Ryong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • In the multi-sensor system, sensor registration errors such as a sensor bias must be corrected so that the individual sensor data are expressed in a common reference frame. If registration process is not properly executed, large tracking errors or formation of multiple track on the same target can be occured. Especially for launch vehicle tracking system, each multiple observation lies on the same reference frame and then fused trajectory can be the best track for slaving data. Hence, this paper describes an on-line bias estimation/correction and asynchronous sensor fusion for launch vehicle tracking. The bias estimation architecture is designed based on pseudo bias measurement which derived from error observation between GPS and radar measurements. Then, asynchronous sensor fusion is adapted to enhance tracking performance.