• 제목/요약/키워드: Track model

검색결과 1,301건 처리시간 0.026초

철도시설물 인접굴착공사에 따른 운행선 궤도의 궤도틀림 영향 평가 (Evaluation of Track Irregularity Effect due to Adjacent Excavation on Serviced Railway Line)

  • 정지승;박동룡;최정열
    • 문화기술의 융합
    • /
    • 제5권4호
    • /
    • pp.401-406
    • /
    • 2019
  • 본 연구는 도시철도 및 고속철도 선로를 근접하여 통과하는 신설 터널 시공현황 및 지반조건을 모사하고 레일, 침목 및 궤도의 탄성스프링으로 구성되는 궤도모델을 적용한 수치모델을 이용하여 3차원 정밀수치해석을 수행한 연구이다. 철도시설물 인접굴착공사에 따른 기존 선로시설물의 궤도변형 안정성 검토를 수행한 결과, 대상 선로의 궤도틀림은 국내 궤도틀림 평가기준에 제시된 일반철도 및 고속철도의 평가기준(허용값)을 모두 만족하는 것으로 나타났다. 궤도모델이 적용된 수치해석을 바탕으로 굴착 공사에 따른 운행선 선로의 변형(궤도틀림) 예측 결과와 실제 현장에서 발생되는 궤도변형의 수준을 가급적 근사한 수준으로 모사할 수 있을 것으로 분석되었다.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

주행차량에 의한 궤도 동적?성의 매개변수 분석 (Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle)

  • 김상효;이용선;조광일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

궤도모형에 따른 철도교량의 동적응답분석 (The Dynamics Responses of Railway Bridges Considering the Track Model)

  • 김상효;이용선;정준;이준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF

Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

  • Lai, Zhipeng;Jiang, Lizhong;Liu, Xiang;Zhang, Yuntai;Zhou, Tuo
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.473-488
    • /
    • 2022
  • A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this long-term vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer's force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer's different properties of tension and compression on the mapping deformations are further evaluated and discussed.

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구 (Railway Track Extraction from Mobile Laser Scanning Data)

  • 좌윤석;손건호;원종운;이원춘;송낙현
    • 한국측량학회지
    • /
    • 제33권2호
    • /
    • pp.111-122
    • /
    • 2015
  • 본 연구에서는 모바일 레이저 스캐닝 데이터로부터 철도 선로탐지 및 선로모델 추출을 위한 방법을 제시하였다. 제안된 방법은 크게 세 단계로 구성된다. 첫째, 레이저 포인트로부터 잠재적인 철도 선로지역을 탐지하고, 초기 철도 선로궤적 방향을 추정한다. 둘째, 철도 선로에 관한 선 지식을 이용하여 첫번째 스트립에서 초기 선로위치를 결정한다. 여기서, 스트립은 국부 탐색공간을 나타내며 철도 선로궤적에 수직인 방향으로 정의된다. 마지막으로, 초기 선로위치에서 GMM-EM기반 분류방법을 통해 선로 포인트들을 탐지한 후 초기 선로 모델을 생성하고 스트립을 데이터 처리 기본단위로 하여 tracking by detection관점에서 연속적으로 선로모델을 생성하였다. 제안된 방법의 주요 특징은 다음과 같다. 첫째, 이전 스트립에서 생성된 선로 모델을 가이드 라인으로 다음 스트립에 전파되어 국부 탐색영역을 예측하여 선로 포인트를 탐지하는 하는데 있어서 처리 복잡성을 줄일 수 있었다. 둘째, 선로 포인트 탐지와 선로 모델링을 동시에 진행 함으로써 데이터 처리 시간을 최소화 할 수 있었다. 개발된 알고리즘은 C++ 프로그램 언어로 구현되었고 도시지역에서 MMS 측량을 통해 취득된 LiDAR 데이터(경부선 일부 구간)를 이용하여 성능 테스트를 진행하였다.

궤도 검측 데이터의 동특성 해석 적용 방법에 관한 연구 (The study for the modeling method for creating track data with the irregularity for use as the input to a rail vehicle dynamic analysis)

  • 박길배;이강운
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.182-187
    • /
    • 2007
  • The accuracy of the results of the rail vehicle dynamic model is dependent on the realism of the track input to the model. An important part of the track input is the irregularities that exist on actual track. This study presents a modeling method for creating track data with the irregularities for use as the input to VAMPIRE, a rail vehicle dynamic analysis program. The characteristics of the measured track data using the mid chord system has been studied and examined the method to create track data with the measured data to apply in the vehicle dynamic analysis.

  • PDF

운행선 궤도형식별 궤도열화에 미치는 매개변수 연구 (Parametric Study on Track Deterioration by Various Track Type of Serviced Line)

  • 최정열;박종윤;정지승
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.239-244
    • /
    • 2022
  • 본 연구는 현장조사 및 실내시험을 바탕으로 궤도형식별 열화에 영향을 미치는 핵심매개변수를 도출하였다. 기존 궤도 열화모델은 자갈궤도에 국한된 모델로서 콘크리트궤도의 열화평가는 연구된 것이 없는 실정이다. 본 연구에서는 운행선 궤도형식별 다양한 궤도구조의 특성이 반영된 열화요인을 도출하고자 궤도구성품의 성능수준 및 상태평가를 위한 실내시험을 수행하였다. 또한 궤도유지관리 이력데이터에 대한 분석을 통해 궤도열화 및 유지관리에 영향을 미치는 매개변수를 도출하였다. 현장조사, 궤도유지관리 이력데이터 분석 및 현장시료를 이용한 궤도구성품의 성능시험을 통해 궤도성능기반의 궤도열화 매개변수는 궤도침하 및 궤도지지강성에 직접적인 영향을 미칠 수 있는 도상자갈과 방진패드인 것으로 분석되었다.

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.