• 제목/요약/키워드: Trace inequality

검색결과 8건 처리시간 0.018초

THE CAUCHY PROBLEM FOR A DENGERATE PARABOLIC EQUATION WITH ABSORPTION

  • Lee, Jin-Ho
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.303-316
    • /
    • 2000
  • The Cauchy problem for degenerate parabolic equations with absorption is studied. We prove the existence of a fundamental solution. Also a Harnack type inequality is established and the existence and uniqueness of initial trace for nonnegative solutions is shown.

  • PDF

SOME TRACE INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

  • Dragomir, Silvestru Sever
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.273-296
    • /
    • 2016
  • Some new trace inequalities for convex functions of self-adjoint operators in Hilbert spaces are provided. The superadditivity and monotonicity of some associated functionals are investigated. Some trace inequalities for matrices are also derived. Examples for the operator power and logarithm are presented as well.

LAGUERRE CHARACTERIZATION OF SOME HYPERSURFACES

  • Fang, Jianbo;Li, Fengjiang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.875-884
    • /
    • 2016
  • Let x : $^{Mn-1}{\rightarrow}{\mathbb{R}}^n$ ($n{\geq}4$) be an umbilical free hyper-surface with non-zero principal curvatures. Then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, and a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. We denote the Laguerre scalar curvature by R and the trace-free Laguerre tensor by ${\tilde{L}}:=L-{\frac{1}{n-1}}tr(L)g$. In this paper, we prove a local classification result under the assumption of parallel Laguerre form and an inequality of the type $${\parallel}{\tilde{L}}{\parallel}{\leq}cR$$ where $c={\frac{1}{(n-3){\sqrt{(n-2)(n-1)}}}$ is appropriate real constant, depending on the dimension.

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.