• Title/Summary/Keyword: Toxic metals

Search Result 457, Processing Time 0.027 seconds

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

Effective Use of Orange Juice Residue for Removing Heavy and Radioactive Metals from Environments

  • Inoue, Katsutoshi;Zhu, Yushan;Ghimire, Kedar-Nath;Yano, Masayuki;Makino, Kenjiro;Miyajima, Tohru
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.264-269
    • /
    • 2001
  • Large amounts of orange juice are produced in Japan every yea.. Accompanied by the production of orange juice, large amount of juice residues are also generated in nearly the same amounts with juice. Although, at present, some of these residues are marketed as a feed for cattle after drying and mixing with lime, the marketing price is lower than its production cost and the difference is paid by the consumers as a part of the price of orange juice. In the present work, we developed new innovative use of orange juice residue, a biomass waste, as adsorption gel for removing toxic heavy metals such as lead. arsenic, selenium and so on as well as radioactive elements such as uranium and thorium from environments. The major components of orange juice residue are cellulose. hemicellulose and pectin, which are converted into pectic. acid, an acidic polysaccharide, by means of saponification with concentrated sodium hydroxide solution. In the previous work, we found that crosslinked pectic acid gel strongly an selectively adsorbs lead over other metals such as zinc an copper. On the other hand. it is well known that polysaccharides such as cellulose can be easily phosphorylated and that phosphorylated polysaccharides have high affinity to uranium and thorium as well as some trivalent metals such as ferric iron and aluminum. Taking account of the noticeable characteristics of these polysaccharides, 2 types of adsorption gels were prepared from orange juice residue: one is the gel which was prepared by saponificating the residue followed by crosslinking with epichlorohydrin and another is that prepared by crosslinking the residue followed by phosphorylation. The former gel exhibited excellent adsorptive separation behavior for lead away from zinc owing to high content of pectic acid while the latter gel exhibited that for uranium and thorium. Both types of adsorption gels exhibited high affinity to ferric iron, which enables selective and strong adsorption for some toxic oxo-anions of arsenic (V and III), . selenium and so on via iron loaded on these gels. These results demonstrate that biomass wastes such as orange juice residue can be effectively utilized fer the purpose of removing toxic heavy or radioactive metals existing in trace or small amounts in environments.

  • PDF

Acute Toxicity of Dissolved Inorganic Metals, Organotins and Polycyclic Aromatic Hydrocarbons to Puffer Fish, Takifugu obscurus (황복(Takifugu obscurus)에 대한 중금속, 유기주석화합물 및 다환방향족탄화수소(PAHs)의 급성 독성)

  • Lee Jung-Suk;Lee Kyu-Tae;Kim Dong-Hoon;Kim Jin-Hyeong;Han Kyung-Nam
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2004
  • We exposed juvenile puffer fish, Takifugu obscurus(30 days after hatching) to various aqueous pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), 2 organotin compound.; (tributyltin [TBT] and triphenyltin[TPhT]) and 5 polycyclic aromatic hydrocarbon (PAH) compounds (chrysene, fluoranthene, naphthalene, phenanthrene and pyrene) to estimate median lethal concentrations (LC50s) of each pollutant after the 96-hour acute exposure. Among the inorganic metals, Hg (52 $\mu\textrm{g}$/L; 96-h LC50) was most toxic to test animals and followed by Ag (164 $\mu\textrm{g}$/L), Cu (440 $\mu\textrm{g}$/L) and Cd (1180 $\mu\textrm{g}$/L). Aqueous TBT was more toxic between the two organotins; the 96-h LC50 for TBT (5.1 $\mu\textrm{g}$/L) was 3 times lower than that of TPhT (17.3 $\mu\textrm{g}$/L). The acute toxicity of PAH compounds was highest for chrysene (1.5 $\mu\textrm{g}$/L; 96-h LC50) and decreased in the order of pyrene (65 $\mu\textrm{g}$/L) > fluoranthene (158 $\mu\textrm{g}$/L) > phenanthrene (432 $\mu\textrm{g}$/L) > naphthalene (8690 $\mu\textrm{g}$/L). The toxicity of PAH compounds wat closely related to their physico-chemical characteristics such as $K_{ow}$ and water solubility, and well explained by simple QSAR relationship. The sensitivity of puffer fish to various inorganic and organic pollutants was generally comparable to various fish species widely used as standard test species in previous studies and further evaluation should be conducted to develop adequate testing procedure for T. obscurus when used in various toxicity tests.

Agricultural Methods for Toxicity Alleviation in Metal Contaminated Soils: A Review

  • Arunakumara, Kkiu;Walpola, Buddhi Charana;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Due to the fact that possible risk associated with soil-crop-food chain transfer, metal contamination in croplands has become a major topic of wide concern. Accumulation of toxic metals in edible parts of crops grown in contaminated soils has been reported from number of crops including rice, soybean, wheat, maize, and vegetables. Therefore, in order to ensure food safety, measures are needed to be taken in mitigating metal pollution and subsequent uptake by crop plants. Present paper critically reviewed some of the cost effective remediation techniques used in minimizing metal uptake by crops grown in contaminated soils. Liming with different materials such as limestone ($CaCO_3$), burnt lime (CaO), slaked lime [$Ca(OH)_2$], dolomite [$CaMg(CO_3)_2$], and slag ($CaSiO_3$) has been widely used because they could elevate soil pH rendering metals less-bioavailable for plant uptake. Zn fertilization, use of organic amendments, crop rotation and water management are among the other techniques successfully employed in reducing metal uptake by crop plants. However, irrespectively the mitigating measure used, heterogeneous accumulation of metals in different crop species is often reported. The inconsistency might be attributed to the genetic makeup of the crops for selective uptake, their morphological characteristics, position of edible parts on the plants in respect of their distance from roots, crop management practices, the season and to the soil characteristics. However, a sound conclusion in this regard can only be made when more scientific evidence is available on case-specific researches, in particular from long-term field trials which included risks and benefits analysis also for various remediation practices.

Trends in Evaluation Techniques for Leaching of Heavy Metals and Nutrients according to Sediment Resuspension in Rivers and Lakes (하천 및 호소 내 퇴적물 재부유에 따른 중금속 및 영양염류 용출량 평가기법 동향)

  • Sang-Gyu Yoon;Seoyeon Han;Haewook Kim;Ihn-Sil Kwak;Jinsung An
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • The phenomenon of sediment resuspension in rivers and lakes causes contaminants (heavy metals and nutrients) accumulated in the sediment to leach into the overlying water. As a result, it can lead to changes in toxic effects and eutrophication in the aquatic ecosystem. In this regard, it is important to quantitatively determine the amount of contaminants leached during sediment resuspension. In this study, methods for assessing the amount of released contaminants and the types of contaminants potentially released due to sediment resuspension were studied and summarized. Methods for assessing leaching can be divided into three groups based on the principle of causing resuspension: (i) the oscillating grid chamber method, (ii) the mechanical stirrer method, and (iii) the shaker method. It was confirmed that the types of contaminants that can potentially be released include heavy metals bound to sulfides, as well as exchangeable and labile forms of heavy metals and nutrients. To effectively manage stable aquatic ecosystems in the future, a simplified leaching test method is needed to assess in advance the risks (i.e., changes in toxic effects and eutrophication) that sediment resuspension may pose to aquatic ecosystems.

Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid

  • Hong, Jeongmin;Lee, Seungwoo;Ko, Dongah;Gwon, Eunmi;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 2020
  • Industrialization and modern developments have led to an influx of toxic heavy metals into the aquatic environment, and the accumulation of heavy metals has serious adverse effects on humans. Among the various heavy metal treatment methods, adsorption is very useful and frequently used. Plastic materials, such as polypropylene and polyethylene, have been widely used as filter media due to their mechanical and chemical stability. However, the surface of plastic material is inert and therefore the adsorption capability of heavy metals is very limited. In this study, granular media and fiber media composed of polypropylene and polyethylene are used, and the surface modification was conducted in order to increase adsorption capability toward heavy metals. Oxygen plasma generated hydroxyl groups on the surface of the media to activate the surface, and then acrylic acid was synthesized on the surface. The grafted carboxyl group was confirmed by FT-IR and SEM. Heavy metal adsorption capability of pristine and surface modified adsorbents was also evaluated. Overall, heavy metal adsorption capability was increased by surface modification due to electrostatic interaction between the carboxyl groups and heavy metal ions. Fibrous PP/PE showed lower improvement compared to granular PP media because pore blockage occurred by the surface modification step, thereby inhibiting mass transfer.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

Construction and Characterization of a Recombinant Bioluminescence Streptomycetes for Potential Environmental Monitoring

  • Park, Hyun-Joo;Hwang, Keum-Ok;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.706-709
    • /
    • 2002
  • Bacterial bioluminescence has been known to be a highly valuable reporter system for its potential application as an effective and simple environmental monitoring method for toxic compounds. In this short report, we constructed a streptomycetes-Escherichia coli shuttle vector-containing bioluminescence system and evaluated its potential application for toxic compounds monitoring. The luxAB biolurninescence genes from Vibrio harveyi were cloned into a streptornycetes-E. coli shuttle vector (named pESK004) and functionally expressed in Streptomyces lividans. The recombinant S. lividans containing pESK004 exhibited an optimal biolurninescence at the optical density ($OD_{600\;nm}$) of 0.4-0.5 and aldehyde concentration of 0.005%. When the recombinant bioluminescence streptomycetes was exposed to a toxic compound such as heavy metals, chlorinated phenols, or pesticides, the bioluminescence was decreased proportionally to the concentration of toxic compound in the assay mixture. The $EC_{50}$ (effective concentration to decrease 50% of the bioluminescence prior to exposure) values in the recombinant biolurninescence streptomycetes for mercury, 2,4-dichlorophenol, and malathion were measured at 2.2 ppm, 144.0 ppm, and 82.4 ppm, respectively. The degree of sensitivity and specificity pattern toward these toxic compounds characterized in this recombinant bioluminescence streptomycetes were unique when compared with previously reported bacterial bioluminescence systems, and this revealed that a recombinant bioluminescence streptomycetes might provide an alternative or complementary system for potential environmental monitoring.

Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. (Alcaligenes sp.의 생장과 인 제거에 미치는 이종 중금속 혼합의 독성 효과)

  • Kim, Deok Hyun;Yoo, Jin;Chung, Keun Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • BACKGROUND: This study was initiated to quantitatively evaluate the effects of five heavy metals on the growth and P removal efficiencies of Alcaligenes sp., known as the Phosphorus Accumulating Organisms (PAOs). It was cultivated in the batch system with five heavy metals, such as Cd, Cu, Zn, Pb and Ni, added in single and binary mixtures, respectively.METHODS AND RESULTS: IC50 (half of inhibition concentration of bacterial growth) and EC50 (half of effective concentration of phosphorus removal Efficiencies) were used to quantitatively evaluate the effects of heavy metals on the growth and phosphorus removal Efficiencies of Alcaligenes sp. In addition, Additive Index Value (A.I.V.) method was used to evaluate the interactive effects between Alcaligenes sp. and heavy metals. As a result, as the five heavy metals were singly added to Alcaligenes sp., the greatest inhibitory effects on the growth and P removal efficiencies of each bacteria was observed in the cadmium (Cd). In the binary mixture treatments of heavy metals, the treatments of lowest IC50 and EC50 were the Cd + Cu treatment. Based on the IC50 and EC50 of the binary mixtures of heavy metals treatments, most interactive effects between the heavy metals were found to be antagonistic.CONCLUSION: Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective treatments of single and binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp. through further study about the characterization of functional proteins involved in toxic effects of heavy metals.