• Title/Summary/Keyword: Toxic gases

Search Result 226, Processing Time 0.027 seconds

Immunological Assessment of Respiratory Allergy Status for the Swine Farm Workers in Gyeonggi Province of Korea (경기 일부지역 양돈 축산인들의 호흡기 알레르기 관련 면역학적 지표 분석)

  • Kim, Ji Youn;Kim, Kwang Ho;Hwang, So Ryeon;Yeo, Kyeong Uk;Kim, Hyoung Ah;Heo, Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.309-315
    • /
    • 2012
  • Objectives: Animal husbandry workers could be exposed to various work hazards including toxic gases, chemicals such as pesticides or organic dust. Immunological evaluation focusing on respiratory allergic hypersensitivity occurrence was under-taken for swine farm workers as a part of the study on immunologic status of dairy barn, swine confinement, and poultry farm workers. Materials and Methods: Peripheral bloods were collected from 25 workers at the year of 2001 and 12 workers at the year of 2012 from swine farms located at Gyeonggi province, Korea. Seven adults not involved with animal husbandry were recruited at the year of 2001 from the same residential area as the swine farm workers'. Level of plasma IgE and 20 respiratory allergen-specific IgE were evaluated using commercially available ELISA kit. Results: Plasma IgE level was approximately five-fold higher in the swine farm workers regardless of the sampling year than the control subjects. Plant allergens from outdoor environments such as golden rod, pigweed, Russian thistle, or ragweed were the major allergens with positive reaction(allergen specific IgE${\geq}$0.7 IU/mL) for the swine farm workers at 2001 year. Meanwhile, house dust mite(Dermatophagoides farinae, D. pteronyssinus) and cockroach, typical indoor allergens in Korea, were the major respiratory allergens for the swine farm workers at 2012 year. Conclusions: Overall, even though our results are primitive, the results suggest that immunological function of swine farm workers could be modulated toward type-2 reactivity.

Performance Evaluation of Search Robot Prototypes for Special Disaster Areas (특수재난지역 정찰로봇 시제품의 성능평가연구)

  • Kwark, Jihyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.109-118
    • /
    • 2015
  • Recently, three kinds of search robot prototypes were developed to assume the role of fire fighters for search and rescue missions in special disaster areas with high heat, smoke, toxic gases, or radioactivity. To accomplish search missions, these robots should be able to endure heat, overcome various obstacles, suppress fires, and see through dense smoke. This study investigated the heat resistance, practicality, and fire fighting capacity of these robots. The results show that the small and middle-sized robots were resistant to surrounding temperatures of $100{\sim}200^{\circ}C$, and the fire-fighter-riding robot could endure up to $500^{\circ}C$ for half an hour. The fire-fighter-riding robot showed excellent extinguishing performance on an A-10 class fire model, which was extinguished within 3 min. The robots also showed various capacities for overcoming obstacles and are expected to play an active role in various special disaster areas.

Investigation of Health Hazards in the Underground Storage Facilities of Ginger Roots (생강 저장굴에서 발생한 건강 피해의 원인 조사)

  • Bae, Geun-Ryang;Lim, Hyun-Sul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.1
    • /
    • pp.72-75
    • /
    • 2002
  • Objectives : To evaluate the health hazards in the underground storage facilities of ginger roots. Methods : The authors reviewed the emergency rescue records from the Seosan fire department over the period Jan 1, 1996 to Aug 31, 1999. The atmospheres in 3 different underground storage locations were analyzed for $O_2,\;CO_2,\;CO,\;H_2S\;and\;NH_4$. Results : From the emergency records, we were able to identify 20 individuals that had been exposed to occupational hazards in the underground storage facilities. Among these 20 cases, 13 were due to asphyxiation (resulting in f deaths) and 7 were due to falls. In the first atmospheric tests, peformed on Feb 25, 1998, the O2 level inside the underground storage facility, located about $5{\sim}6$ meters below the surface, was 20.6% and the $CO_2$ level was about 1,000 ppm. CO, $H_2S\;and\;NH_4$ were not detected. In the second tests on Jul 6, 1999, measurements of the $O_2$ level at 3 meters below the surface in two different storage locations were 15.3 and 15.1%. And the $O_2$ levels inside the storage facilities were 12.2 and 12.1%. The $CO_2$ level was above 5,000 ppm (beyond upper limits of measurement). CO, $H_2S\;and\;NH_4$ were not detected. Conclusions : We conclude that asphyxiation in the underground storage facilities for ginger roots was not due to the presence of toxic gases such as CO, $H_2S\;and\;NH_4$, but rather the exclusion of oxygen by carbon dioxide was responsible for causing casualties. For the development of a hazard free working environment, safety education as well as improvements in storage methods are needed.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Fast Measurement using Wave-Cutoff Method

  • Seo, Sang-Hun;Na, Byeong-Geun;Yu, Gwang-Ho;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.

  • PDF

Induction of Red Discoloration in Rice var. Tongil with Certain Metabolic Inhibitors (대사저해제에 의한 "통일"벼 적고현상 유발에 관하여)

  • Beyoung-Hwa Kwack;Chan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.115-121
    • /
    • 1974
  • Artificial induction of nitrogen deficiency symptoms (leaf chlorosis) with two root respiratory inhibitors(DNP and Na$_2$S) was studied and regarded to be the same characteristic to red discoloration in rice var. Tongil seedling leaves as well as adult ones. Tongil(IR 667) was shown to be more nitrogen sensitive and have more distinctive appearance of the leaf discoloration than Punggwang(a native Japonica-type varity.) Conclusions were drawn from the present data that so-called red discoloration of Tongil under the natural field conditions is brought about either by insufficient nitrogen supply in soils or certain factors which may limit at any time the root absorption of nitrogen (low temperature, toxic gases or substances, poor drainage, around roots, etc.) in soils even with ample supply of it.

  • PDF

Degasser for Products Produced Using Research to Improve the Quality (제품생산 시 탈가스 장치를 이용한 품질향상에 관한 연구)

  • Kang, Seog Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4713-4716
    • /
    • 2014
  • Several methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals, and the input method that supplies argon and nitrogen, or chlorine gas using a gas blow-tube. On the other hand, these methods have some problems, and it is a difficult process to handle pollution due to the production of considerable toxic gases, such as chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are most fatal are the production of considerable sludge due to a reaction of aluminum molten metal with chemicals, loss of metals, and the decreasing life of refractory materials. To solve these problems, this study developed a technology that is related to continuous casting of molten aluminum metal and monolithic degasing apparatus.

Sterilization of Seawater for the Ballast Water Management System (선박평형수 관리시스템을 위한 해수 살균법)

  • YUN, YONGSUP;CHOI, JONGBEOM;KANG, JUN;LEE, MYEONGHOON
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.172-172
    • /
    • 2016
  • The International Maritime Organization(IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Forty ballast water treatment systems were granted final approval. A variety of techniques have been developed for ballast water treatment including UV treatment, indirect or direct electrolysis, ozone treatment, chemical compounds and plasma-arc method. In particular, using plasma and ozone nano-bubble treatments have been attracted in the fields. However, these treatment systems have a problem such as remained toxic substance, demand for high power source, low efficiency, ets. In this paper, we present our strilization results obtained from membrane type electrolytic-reduction treatment system The core of an electrolysis unit is an electrochemical cell, which is filled with pure water and has two electrodes connected with an external power supply. At a certain voltage, which is called critical voltage, between both electrodes, the electrodes start to produce hydrogen gas at the negatively biased electrode and oxygen gas at the positively biased electrode. The amount of gases produced per unit time is directly related to the current that passes through the electrochemical cell. From the results, we could confirm the sterilization effect of bacteria such as S. aureus, E. Coli and demonstrate the mechanism of sterilization phenomena by electrolytic-reduction treatment system.

  • PDF

Synthesis of SrGa2S4 Phosphor and Its Luminescent Properties (SrGa2S4 형광체의 합성과 발광 특성)

  • Heo, Yeong-Deok;Sim, Jae-Hun;Do, Yeong-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.164-168
    • /
    • 2002
  • SrGa$_2$S$_4$ : Eu is a green emitting phosphor which is applied for field emission display, and cathodoluminescence. Conventionally, SrGa$_2$S$_4$ : Eu is synthesized by solid state reaction, in which a mixture of SrCO$_3$, Ga$_2$O$_3$, and Eu$_2$O$_3$ is fired at high temperatures under flowing H$_2$S and Ar gases. In this study,SrGa$_2$S$_4$ : Eu phosphor is synthesized by using a decomposition method, where SrS, Eu complex, and Ga com-plex are used. The advantage of this method is that toxic H$_2$S gas and Ar gas are not used. The synthetic con-ditions and luminescent properties of SrGa$_2$S$_4$ : Eu phosphor are also investigated.

Effect of Waste Glass Wool on Mechanical Properties of Concrete (폐글라스울이 콘크리트의 역학적 특성에 미치는 영향)

  • Kim, Jeong-Tae;Choi, Woo-Hyuk;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • Glass wool is a material that has been used as a heat insulator in various fields including construction industry. Since it is a nonflammable material, it does not generate toxic gases on fire, and thus public agencies recommend using glass wool as a heat insulator instead of other organic materials. However, repeated drying and wetting cycles can deteriorate thermal property of glass wool due to the shrinkage and reduction in pore size. For this reason, it needs to be replaced periodically, and waste materials are generated. This research aims to utilize waste glass wool as additives for increasing mechanical properties of concrete. According to the experimental results, it was found that glass wool has weak pozzolanic activity, and beneficial effect on both compressive and flexural strength. The optimum amount found in this experimental work was 0.5% volumetric addition to the concrete.