• Title/Summary/Keyword: Toxic gases

Search Result 226, Processing Time 0.023 seconds

A Study on the Fire Safety Management measures from during a fire toxic gases generated (Focus to Co gas measures) (화재시 생성된 유독가스로부터의 소방 안전관리 방안 연구(Co 가스 대책을 중심으로))

  • Kim, Byeong-Seok;Jang, Byeong-Jip;Choe, Man-Cheol
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.55-66
    • /
    • 2011
  • Recently developed a variety of architectural interior decoration according hwadoeme type of toxic gases generated during fire also are becoming diversified, resulting in fatal casualties occurred in the trend is also being increased. During a fire, toxic gas that is generated varies depending on the combustible material occurs. However, all combustible materials, including carbon, incomplete combustion of carbon monoxide which is generated in the most common toxic gases can be seen as one. Accordingly, in this study of organic solids that are generated in case of fire toxic gases, and briefly discuss the characteristics of the risks and, by far the most common Co gas for measures to prevent human casualties, seolbijeok, the temperature dependence, divided into four aspects of administrative daechaekdeung explained.

  • PDF

Occurrence quantity comparison of the toxic gases of the railway car's gangway materials using a Smoke Density-Chamber (철도차량용 통로연결막 재료별 독성성분의 발생량 비교)

  • Lee, Eun-Kyoung;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1533-1539
    • /
    • 2007
  • It is mainly due to the toxic gases, produced from the material combustion, threatens human body in case of urban railway car like subway which passes through underground tunnel. In the field of railway industry, fire accidents was not frequent but occurs in each country and, the causes was investigated. The advanced country established the test standard (e.g., BS, EN) to measure the toxic gases quantitatively and, have applied to enhance the fire safety of railway car. We must also follow the procedures to use gangway material for railway car as stated the Safety regulation for the urban railway car. In this study, various gangway materials(silicon, synthtic rubber, soaltapulin) are used to investigate element of toxic gases when the fire occurs. The amount of toxic gases measured from the ISO 5659 chamber using cone heater was measured and compared the results for each materials.

  • PDF

Review on Sensor Technology to Detect Toxic Gases (독성가스 감지용 센서 기술 동향 리뷰)

  • Lee, Janghyeon;Lim, Si-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2015
  • The excess use and generation of various toxic gases from many industrial complexes and plant facilities have increased the possibility of leakage or explosion accidents, which can cause fatal damage to human beings in the wide range of neighboring area. To prevent the exposure to the fatal toxic gases, it is very important to monitor the leakage of toxic gases using gas sensors in real time. Various types of gas sensors, which can be classified as semiconductor, electrochemical, optical, and catalytic combustion types according to the operating principles, have been developed. In this review, the operation principles of gas sensors are explained and the performance of those sensors is compared. The state-of-the-art gas sensor technologies developed by research institutes or companies are reviewed also.

A Study on the ways to minimize Casualties through a consideration of the CO gas generated during combustion (연소시 생성된 CO가스의 고찰을 통한 인명피해 최소화 방안에 관한 연구)

  • Choi, Man-Chul;Kim, Byung-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.133-140
    • /
    • 2013
  • Recently developed a variety of architectural interior decoration according hwadoeme type of toxic gases generated during fire also are becoming diversified, resulting in fatal casualties occurred in the trend is also being increased. During a fire, toxic gas that is generated varies depending on the combustible material occurs. However, all combustible materials, including carbon, incomplete combustion of carbon monoxide which is generated in the most common toxic gases can be seen as one. Accordingly, in this study of organic solids that are generated in case of fire toxic gases, and briefly discuss the characteristics of the risks and, by far the most common Co gas for measures to prevent human casualties, seolbijeok, the temperature dependence, divided into four aspects of administrative daechaekdeung explained.

A Study on the Toxic Gases and Smoke Hazard of PASCON Trough (파스콘 트로프의 연기유독성에 관한 연구)

  • Lee, Chang-Woo;Hyun, Seong-Ho;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.1-7
    • /
    • 2006
  • The aim of the research is to estimate the effect of smoke and combustion gases on humane body indirectly through measuring the toxicity of those. For this purpose, the toxic index of smoke and combustion gases was investigated by smoke hazard test and analysis of smoke which were conducted by KS F 2271 and NES 713 method respectively. It i s proved by KS F 2271 method that PASCON trough is suitable to the testing standard of interior material and construction of building. In addition, it is identified by NES 713 method that combustion gases occurring in PASCON product were only carbon dioxide and carbon monoxide, and the smoke index of those was 0.944. This value means that the hazard effect of smoke gases on humane ! body can possibly happens when exposed to the smoke gases for more than 30 min. In aspect of the domestic situation that have not regulated the hazard estimation and the emissions of smoke when the flame retarding ability of the products have been requested, the toxic indexes of PASCON products are comparatively low.

A Toxicity Evaluation on the Toxic Gases Released from Interior Upholstery Fires (실내 마감재의 유독가스 방출에 관한 독성평가)

  • Ham, Sang-Keun;Kim, Hong;Gang, Yeong-Gu;Kim, Dong-Hyeon;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The toxic gases released from a fire can be classified as asphyxiants such as carbon monoxide, and irritants such as hydrochloric acid, etc. It is recognized that the combustion characteristic of interior upholstery is one of the important factors to determine the severity of indoor fires. In this study, several of the mostly used interior upholsteries including wallpaper, veneer board, curtain and floor cover, were selected to be evaluated by using the method of NES 713. The toxicity indices of the experimental samples, which indicate their toxic potentials in a fire were lowered in the order of Wallpaper (Flame Retardant) 8.5>Floor Cover(Hard) 4.8>polyurethane 4.3>Floor Cover(Soft) 3.5>PVC 2.8> Veneer Board 2.3> Floor Cover(flame retardant) 2.1>Wallpaper(Promulgation) 1.4>Curtain 0.9. It is concluded that, among all the tested upholsteries, wallpaper (flame retardant) would release the largest quantity of Toxic gases in a fire.

Technical study on quantitative analysis of the toxic gas concerning the combustion property of interior materials of railway car (철도차량용 내장 재료의 연소특성을 고려한 유해가스 정량분석 기법연구)

  • Park, Ji-Young;Lee, Cheul-Kyu;Lee, Duck-Hee;Jung, Woo-Sung;Chung, Hoe-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1114-1118
    • /
    • 2008
  • In previous fire accident of railway car, the fatality was relatively high by toxic gas poisoning cause of closed space. So the necessity of quantifying toxic gas in combustion gas was recognized and then, FT-IR spectroscopy was introduced for real-time analysis of mixed gases and stimulated analysis of the concentration of several gases. Thus, in this study, absorption bands using FT-IR were obtained by each component of combustion gases for interior materials of railway car such as flooring materials and moquette seat. And then the sample spectra were compared with the spectra of NO, $NO_2$, $SO_2$ reference gases, we could obtain some identical peaks of them.

  • PDF

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics (피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성)

  • Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

Consequence Analysis for Accidental Releases of Toxic Gases through Risk Based Inspection using API-581 (API-581에 의한 위험기반검사에서 독성가스의 누출사고 결과분석)

  • Kim Tae-Ok;Lee Hern-Chang;Kim Hwan-Joo;Shin Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.8-14
    • /
    • 2004
  • Accidental releases of toxic gases heavily affect to the risk of process facilities. In this research, consequence analysis for accidental releases of ammonia and chlorine gases was studied using the risk based inspection, based on API-581 BRD. It was found out that consequence areas (toxic areas) decrease as temperature increases and as the pipe diameter and pressure decrease. For the same release condition, the toxic area by the release of chlorine gas was larger than that by the release of ammonia gas.

  • PDF