• Title/Summary/Keyword: Toxic Level

Search Result 682, Processing Time 0.026 seconds

Analysis of the Stress Effects of Endocrine Disrupting Chemicals (EDCs) on Escherichia coli

  • Kim, Yeon-Seok;Min, Ji-Ho;Hong, Han-Na;Park, Ji-Hyun;Park, Kyeong-Seo;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1390-1393
    • /
    • 2007
  • In this study, three of the representative EDCs, $17{\beta}$-estradiol, bisphenol A, and styrene, were employed to find their mode of toxic actions in E. coli. To accomplish this, four different stress response genes, recA, katG, fabA, and grpE genes, were used as a representative for DNA, oxidative, membrane, or protein damage, respectively. The expression levels of these four genes were quantified using a real-time RT-PCR after challenge with three different EDCs individually. Bisphenol A and styrene caused high-level expression of recA and katG genes, respectively, whereas $17{\beta}$-estradiol made no significant changes in expression of any of those genes. These results lead to the classification of the mode of toxic actions of EDCs on E. coli.

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관 안전관리 향상방안 연구)

  • Choi, Hyun-Woog;Lee, Dong-Min;Kim, jin-jun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.100-106
    • /
    • 2018
  • pressure buried pipes in domestic industrial estate have many long-term use pipes, Toxic, flammable, Inflammable, etc. as well as a variety of toxic chemicals are embedded in a complex be buried, A high level of safety management is required as it can damage other pipes installed nearby in the event of accidents such as various external interference. Therefore, in this study, the safety management practices of high-pressure gas distribution and urban gas distribution are utilized to derive efficient safety management methods for high-pressure gas installation piping through in-depth comparative analysis.

A Pharmacological Advantage of Ursodeoxycholic Acid in Cytoprotection in Primary Rat Microglia

  • Joo, Seong-Soo;Hwang, Kwang-Woo;Lee, Do-Ik
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Ursodeoxycholic acid (UDCA) has long been used as an adjuvant or first choice of therapy for liver disease. Commonly, UDCA has been reported to play a role in improving hyperbilirubinemia and disorder of bromsulphalein. More commonly, UDCA has been used in reducing the rate of cholesterol level in bile juice that can cause cholesterol stone. The effects on the promotion of bile acid release that leads an excretion of toxic materials and wastes produced in liver cells as well as various arrays of liver disease such as hepatitis. Other than already reported in clinical use, immunosuppressive effect has been studied, especially in transplantation. In the study, we hypothesized that UDCA might have a certain role in anti-inflammation through a preventive effect of pro-inflammatory potentials in the brain macrophages, microglia. We found that the treatment of $200\;{\mu}g/ml$ UDCA effectively suppressed the pro-inflammatory mediators (i.e. nitric oxide and interleukin-$1{\beta}$) in rat microglia compared to comparators. Interestingly, RT-PCR analysis suggested that UDCA strongly attenuated the expression of $IL-1{\beta}$ that was comparable with cyclosporine A at 48 h incubation. Conclusively, we found that UDCA may playa cytoprotective role in microglial cells through direct or indirect pathways by scavenging a toxic compound or an anti-inflammatory effect, which are known as major causes of neurodegenerative diseases.

Allelopathic Effects of Leaf Extract of Pinus rigida Mill. on the Seeds Germination of Raphanus sativus var. hortensis for. acanthiformis Makino (리기다소나무의 잎 抽出液이 무우 種子의 發芽에 미치는 Allelopathy 效果)

  • Kim, Young-Ok;Kim, Seon-Ho;Lee, Ho-Joon;Eun, Moo-Young
    • The Korean Journal of Ecology
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • Toxic effert of water extract from leaves of Pinus rigida and some phenolic compounds on the seeds germination of Raphanus sativus var. hortensis for. acanthiformis Makino has been studied. There was little difference of germination percentage among the pH value of leaf extract (pH3~9). The germination percentage drastically with increased concentration level of leaf extract at about 60 percent. Seeds gemination of Raphanus sativus var. hortensis for. acanthiformis Makino inhibited severely by caffeic acid, ferulic acid and p-coumaric acid at M, but the germination percentage was higher than that of the control group in vanillic acid. In electrophoresis, there was no differences at earlier seedling stage of protein band between allelochemical treated and non-treated group, but in late stage, two protein band near 58kd and 27kd did not appeared in the toxic affected group. In case of caffeic acid treatment, two protein band near 58kd and 27kd did not found at late stage too.

  • PDF

A Study on the Development of Food Dye from Gardenia Fructus (치자(梔子)(Gardenia Fructus)를 이용(利用)한 식용색소(食用色素) 개발(開發)에 관(關)한 연구(硏究))

  • Sheo, Hwa-Jung
    • Journal of Nutrition and Health
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 1981
  • Crocin was extracted from Gardenia fructus in order to manufacture a natural food dye. In the extraction and purification process methanol and ethanol were used as the most Suitable solvent selected in preliminary test and 9.28%g/100g of Cretin product in 99.89% of purity was acquired. The lethal dose of Cretin administered in mouse by intra peridoneal was 5.36g/kg which is much lower toxic than any other. The toxic dose which caused diarrhoea in rat was 2.55g/kg and maximum no effect level was found to be 272mg/kg. From the $1%{\sim}2.5%$ content of Crocin in rat diet reduction of body weight appeared and GTP and GOT (Transaminase) value in creased significantly. Crocin showed a good properties of tolerating acid, alkali, sunlight, reductant, oxidant, and salt compared with tar dyes. The range from 100 ppm to 500ppm bring out bright $yellow{\sim}orange$ color, the most effective color, with a good solubility in water-slightly in oil. The acceptable daily intake of crocin was calculated as 2.72mg/kg based on maximum no effect dose (2% additive dose).

  • PDF

Neem (Azadirachta indica) Seed Cake in Animal Feeding-Scope and Limitations - Review -

  • Gowda, S.K.;Sastry, V.R.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.720-728
    • /
    • 2000
  • The different products of neem (Azadirachta indica) are utilized for variety of purposes in industry, health and animal agriculture in the Indian subcontinent. The cake from seeds after oil extraction is a good source of nutrients (CP: 35-38%; EE: 4.5-5.5%; CF: 12-15%; Ca: 0.75%; P: 0.45% on DM), and in particular, the one out of its kernel is proteinaceous and is relatively balanced in its amino acid and mineral profile. But the cake is toxic and bitter to taste owing to triterpenoids (nimbin, salannin, azadirachtin), which restricts its safe inclusion in livestock diet. Several feeding trials with raw cake have revealed poor palatability and adverse performance among different categories of livestock and poultry. Internal organ changes included histological alteration in intestine, liver, kidney and distruption of spermatogenesis and ovarian activity. Ruminants appears to tolerate reasonably higher levels of the cake and to a limited low levels of dietary inclusion also proved to be tolerable in monogastric farm animals. Debitterization through solvent (hexane, ether) extraction, water washing, alkali (NaOH, 1.5, 2.5 or 3%, wt/wt) soaking and urea (1.5 or 3%, wt/wt) - ammoniation have been tried with appreciable success in improving the palatability and nutritive value of the cake. For enhanced utilization, decortication of neem seeds is to be done effectively at industrial level with maximum oil recovery. The resultant proteinaceous kernel by-product could be a cheaper unconventional protein supplement after suitable processing.

Toxic Effect of Inhaled Toluene on the Neural Cell (톨루엔 흡입이 신경세포에 미치는 독성)

  • 김대병;류종훈;신대섭;이종권;정경자;류승렬;최기환;이선희;김부영
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.251-256
    • /
    • 1997
  • Toluene inhalation increases glutamate level and its receptor in various brain regions. In this study, nitric oxide synthase (NOS) activities were investigated in various rat brain regions using NADPH diaphorase staining method which examined histochemical changes of NOS in the neural cells. Also, in vitro LDH leakage assay and MTT test were performed to investigate the toxic influences of toluene in cultured granule cell of rat cerebellum which was significantly affected with toluene in vivo. Rats were exposed to toluene of 10000 ppm for 3 days. 7 days and 14 days by 20 min $\times$ 2 times a day. NADPH diaphorase staining was processed in the different brain regions after inhalation. NADPH diaphorase staining density was not significantly changed at 3 days inhalation group, but the density decreased in proportion to the duration of toluene inhalation. Over 30% of staining density was decreased at 14 days group which was maximum duration of inhalation in this study. The tendency of staining density decrease was significant in granule cell of cerebellum. Cell death by toluene exposure was observed in cultured cerebellar granule cell. $EC_{50}$ measured with LDH leakage assay and MTT test were 43 mM and 72 mM respectively.

  • PDF

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

Evaluation of Oxidative Stress and Antioxidant Enzyme Expression in Human Hepatocarcinoma SK-Hep-1 Cells Treated with Stearic Acid (인간 간암 세포주인 SK-Hep-1에서 Stearic Acid에 의한 산화적 스트레스 및 항산화효소의 발현변화 평가)

  • Oh, Jung-Min;Lee, Ji-Yoon;Lee, Gwan-Ho;Kim, Bong-Hee;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • Nonalcoholic steatohepatitis(NASH) is serious metabolic disease related to fatty acid. According to "two hit theory", fatty acid-induced oxidative stress is important factor to progress nonalcoholic steatohepatitis from steatosis. In this study, we evaluated stearic acid induced oxidative stress in human hepatocarcinoma SK-Hep-1 cell. Cell viability, reactive oxygen species (ROS) production, glutathione (GSH), malondialdehyde and expression of antioxidant enzymes were determined at various time-points and concentrations of stearic acid. At 0.2 mM, non-toxic concentration, of stearic acid, production of ROS was significantly increased at 24 hours and the level of GSH was significantly decreased. Expression of superoxide dismutase-1 and 2 was slightly increased in 0.2 mM stearic acid at 24 hours. These results represent that the non-toxic concentration of stearic acid resulted in oxidative stress, suggesting that stearic acid may play a critical role in development of steatohepatitis.