References
- Selkoe, D.J. The molecular pathology of Alzheimer's disease. Neuron. 6, 487-498 (1991) https://doi.org/10.1016/0896-6273(91)90052-2
- Dickson, D.W., Lee, S.C., Mattiace, L.A., Yen, S.H. & Brosnan, C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7, 75-83 (1993) https://doi.org/10.1002/glia.440070113
- Lue, L.F. & Walker, D.G. Modeling Alzheimer's disease immune therapy mechanisms; interaction of human postmortem microglia with antibody- opsonized amyloid beta peptide. J. Neurosci Res. 70, 599- 610 (2002) https://doi.org/10.1002/jnr.10422
-
Bayer, T.A., Wirths, O., Majtenyl, K., Hartmann, T., Multhaup, G., Beyreuther, K. & Czech, C. Key factors in Alzheimer's disease:
${\beta}-amyloid$ precursor protein processing, metabolism, and intraneuronal transport. Brain Pathology 11, 1-11 (2001) - Giulian, D., Baker, T.J., Shih, L. & Lachman, L.B. Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp Med 164, 594-604 (1986) https://doi.org/10.1084/jem.164.2.594
- Giulian, D. Ameboid microglia as effectors of inflammation in the central nervous system. J. Neuroscience Res. 18, 155-171 (1987) https://doi.org/10.1002/jnr.490180123
- Banati, R.B., Gehrmann, J., Schubert, P. & Kreutzberg, G.W. Cytotoxicity of microglia. Glia 7, 111- 118 (1996) https://doi.org/10.1002/glia.440070117
- Rodrigues, C.M.P., Ma, X., Kren, B.T. & Streer, C.J. A novel role for ursodeoxycholic acid in inhibiting apotosis by modulating mitochondrial membrane perturbation. J. Clin Invest 101, 2790-2799 (1998) https://doi.org/10.1172/JCI1325
- Kim, S.H., Won, S.J., Sohn, S.H., Kwon, H.J., Lee, J.Y., Park, J.H. & Gwag, B.J. Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translocational activation of NADPH oxidase. J. Cell Biol 159, 821-831 (2002) https://doi.org/10.1083/jcb.200112131
-
Yanker, B.A., Duffy, L.K. & Kirschner, D.A. Neuroprophic and neurotoxic effects of amyloid
${\beta}$ protein: Reversal by tachykinin neuropeptide. Science 250, 279-282 (1990). https://doi.org/10.1126/science.2218531 - Chao, C.C., Hu, S., Molitor, T.W., Shaskan, E.C. & Peterson, P.K. Activated microglia mediated neuronal cell injury via a nitric oxide mechanism. J. Immunol 149, 2736-2741 (1992)
- Chung, H., Brazil, M., Soe, T.T. & Maxfield, F.R. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J. Biol Chem 274, 32301-32308 (1999) https://doi.org/10.1074/jbc.274.45.32301
- Possel, H., Noack, H., Putzke, J., Wolf, G. & Sies, H. Selective upregulation of inducible Nitric Oxide Synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia. Glia 32, 51-59 (2000) https://doi.org/10.1002/1098-1136(200010)32:1<51::AID-GLIA50>3.0.CO;2-4
- Kim, W.G., Mohney, R.P., Wilson, B., Heohn, G.H., Liu, B. & Hong, J.S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci 20, 6309- 6316 (2000)
-
Meda, L., Cassatella, M.A., Szendrei, G.I., Baron, P., Villalba, M., Ferrari, D. & Rossi, F. Activation of microglia cell by
${\beta}-amyloid$ protein and interferon-${\alpha}$ . Nature 374, 647-650 (1995) https://doi.org/10.1038/374647a0 - Benveniste, E.N. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am. J. Physiol. 263, 1-16 (1992) https://doi.org/10.1152/ajpcell.1992.263.3.1-a
- Strijbos, P.J. & Rothwell, N.J. Interleukin-1beta attenuates excitatory aminoacid-induced neurodegenerstion in vitro: involvement of nerve growth factor. J. Neurosci 153, 3468-3474 (1995)
- Lue, L. et al. J. Inflammatory repertories of Alzheimer's disease and non demented elderly microglia in vitro. Glia 35, 72-79. (2001) https://doi.org/10.1002/glia.1072
- Forloni, G., Demichelli, F., Giorgi, S., Bendotti, C. & Angeretti, N. Expression of amyloid precursor protein mRNAs in endothelial, neuronal, and glial cell: modulation by interleukin-1. Brain Res. 16, 128-134 (1992) https://doi.org/10.1016/0169-328X(92)90202-M
- Mrak, R.E., Sheng, J.G. & Griffin, W.S.T. Glial cytokines in Alzheimer's disease: reveiwand pathogenic implication. Hum Pathol 26, 816-823. (1995) https://doi.org/10.1016/0046-8177(95)90001-2
- Sheng, J.G., Ito, K., Skinner, R.D., Mrak, C.R., Van Eldik, L.J. & Griffin, W.S.T. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17, 761-766 (1996) https://doi.org/10.1016/0197-4580(96)00104-2
- Jaffrey, S.R. & Snyder, S.H. Nitric oxide: a neural me-ssenger. Annu Rev Cell Dev 11, 417-440 (1995)
- Varadarajan, S., Yatin, S., Aksenova, M. & Butterfield, D.A. Alzheimer's amyloid beta-peptide associated free radical oxidative stress and neurotoxicity. J. Structural Biol 130, 184-208 (2000) https://doi.org/10.1006/jsbi.2000.4274
- Joo, S.S., Won, T.J. & Lee, D.I. Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2). Arch Pharm Res. 27, 954-960 (2004) https://doi.org/10.1007/BF02975850
-
Bowie, A. & O'Neill, L.A.J. Oxidative stress and nuclear Factor-
${\kappa}B$ activation; a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59, 13-23 (2000) https://doi.org/10.1016/S0006-2952(99)00296-8