• Title/Summary/Keyword: Toxic Gas

Search Result 491, Processing Time 0.028 seconds

A Study on the Estimation of Damage by Leaking of NH3 and Cl2 applied to LPCVD (LPCVD에서 암모니아와 염소의 누출에 대한 피해예측)

  • Huh, Yong-Jeong;Leem, Sa-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.1-5
    • /
    • 2014
  • As high-tech science has developed, the need of semiconductor is required constantly. However, there are many processes which use a great deal of poisonous gas in the semiconductor process, so the dangerousness by a gas leak is latent in these processes. Especially, the accident of toxic gas is almost made by ammonia and chlorine. Therefore this report estimates the damage by the leak of ammonia and chlorine used in LPCVD system.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Estimation of the Relative Risk of the Elderly with Different Evacuation Velocity in a Toxic Gas Leakage Accident (독성물질 누출 시 대피 속도 차이에 따른 고령자의 상대적 위험도 산정)

  • Lee, H.T.;Kwak, J.;Park, J.;Ryu, J.;Lee, J.;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • Leakage accidents in businesses dealing with hazardous chemicals can have a great impact on the workers inside the workplace, as well as residents outside the workplace. In fact, there were cases where hazardous chemicals leaked from many businesses. As a result, the Chemicals Control Act(CCA) was enacted in 2015, the Ministry of Environment introduced an Off-site Risk Assessment(ORA). The purpose of the ORA is to secure safety from the installation of the design of the workplace facilities so that chemical accidents of hazardous chemical handling facilities do not cause human or physical damage outside the workplace. In general, the ORA qualitatively determines where a protected facility is within the scope of the accident scenario. However, elderly who belong to the sensitive group is more sensitive than the general group under the same chemical accident effect, and the extent of the damage is serious. According to data from the Korea National Statistic Office, the number of elderly people is expected to increase steadily. Therefore, a quantitative risk analysis considering the elderly is necessary as a result of a chemical accident. In this study, accident scenarios for 14 locations were set up to perform emergency evacuation due to toxic gas leakage of Cl2(Chlorine) and HF(Hydrogen Fluoride), and the effects of exposure were analyzed based on the evacuation velocity difference of age 20s and 60s. The ALOHA(Areal Locations of Hazardous Atmospheres) program was used to calculate the concentration for assessing the effects. The time of exposure to toxic gas was calculated based on the time it took for the evacuation to run from the start point to the desired point and a methodology was devised that could be applied to the risk calculation. As a result of the study, the relative risk of the elderly, the sensitive group, needs to be determined.

Studies on the Fish Kills by Histopathological Characteristics in Gills and Caudal Fins (아가미 혈종과 지느러미 표피탈락 현상을 이용한 어류 폐사원인 연구)

  • 최필선;최성수;이길철;윤준헌;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.3_4
    • /
    • pp.45-51
    • /
    • 1996
  • Histopathological changes of gills and caudal fins isolated from fishes, Cyprinus carpio, Carassius auratus, and Hernibarbus labeo, which were killed by oxygen deficiency or toxic chemicals, were studied. The toxic chemicals were HCl, NaOH, chloroform, benzene, heavy metals(Cu, Cr, Zn, Pb, Hg), and o-dichlorobenzene. The exposure level was enough to kill the fishes within 30 minutes. Oxygen deficient water was prepared by aeration of nitrogen gas and the oxygen concentration was less than l ppm. Cryocutting was used for the rapid preparation of tissue slides and the tissues were stained by hematoxylin/eosin. In the fishes killed by hazardous chemicals, congestion and/or hyperplasia of secondary lamella and erosion of fin were found as the major histopathological changes. Whereas, these characteristics were not observed in gills or caudal fins of fishes killed by oxygen deficiency. These different bioindications appeared in the fishes killed by toxic substances or natural causes, can be used for the rapid identification of the causes of fish kills.

  • PDF

Toxic gases's comparison of the railway car's interior materials using a FT-IR (FT-IR을 이용한 철도차량용 내장재료별 독성성분의 발생량 비교)

  • Lee Eun-Kyoung;Jung Woo-Sung;Lee Duck-Hee;Park Duck-Sin;Lee Cheul-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1254-1260
    • /
    • 2005
  • The advanced country established the test standard (e.g., BS, EN) to measure the toxic gases quantitatively and, have applied to enhance the fire safety of railway car. We must also follow the procedures to use interior material for railway car as stated the Safety regulation for the urban railway car. Currently, various interior materials are used to obtain the fire safety of railway car. The amount of toxic gases moved into the FT-IR gas cell via sampling line from the ISO 5659 chamber using cone heater was measured and compared the results for each materials.

  • PDF

Study for an BF3 Specialty Gas Production (BF3 생산에 관한 연구)

  • Lee, Taeck-Hong;Kim, Jae-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.74-78
    • /
    • 2011
  • $BF_3$ gas has been used for semiconductor manufacturing process and applied in plasma etching, chemical vapor deposition, chamber cleaning processes etc,. $BF_3$ provides Boron and acts as a p-type doping in electrode in semiconductor. In this study, we investigate thermaldecomposition of alkali-boron complexes and suggest a simple way to produce $BF_3$ from $NaBF_4$ and $KBF_4$.

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.75-81
    • /
    • 2023
  • The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

A Toxicity Evaluation for the Toxic Gases of Building Finish Materials (건축물 마감재료 연소가스에 의한 독성평가)

  • Cho, Nam-Wook;Cho, Dong-Ho;Oh, Eun-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2012
  • Smoke toxicity is the test for the toxicity evaluation of smoke and hazardous gas, caused by combustion of building materials and finishing materials. Smoke toxicity can be evaluated by the mean incapacitation time of mice. This test result can be influenced by the health status of mice and test condition. In acute inhalation toxicity test of hazardous gas, no typical clinical findings and histopathologic abnormalities were observed. Tracheitis and bronchitis as well as acute lung inflammation around terminal bronchiole in some mouse of the highest dose group. Through this study, we established the method for inhalation toxicity test of hazardous gas as well as the SOP of inhalation toxicity test. However, in the future studies, the concentration control methods for inhalation technologies on hazardous gas will be needed to improve continuously and also further studies on other gas inhalation toxicity will be needed to conduct.

Highly Sensitive Gas Sensors Based on Electrospun Indium Oxide Nanofibers for Indoor Toxic CO and HCHO Gases (전기방사법으로 제작한 In2O3 나노섬유 기반 고감도 실내독성 CO 및 HCHO 가스센서)

  • Im, Dong-Ha;Hwang, Sung-Hwan;Kwon, Se-Hun;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.803-808
    • /
    • 2016
  • In this work, one dimension $In_2O_3$ nanostructures as detecting materials for indoor toxic gases were synthesized by an electrospinning process. The morphology of electrospun $In_2O_3$ nanofibers was controlled by electrolyte composition, applied voltage and working distance between a nozzle and a substrate. The synthesized $In_2O_3$ nanofibers-based paste with/without carbon black additives was prepared for the integration on a sensor device. The integration of $In_2O_3$ sensing materials was conducted by a hand-printing of the paste into the interdigit Au electrodes patterned on Si wafer. Gas sensing properties on CO and HCHO gases were characterized at $300^{\circ}C$. The evaluated sensing properties such as sensitivity, response time and recovery time were improved in $In_2O_3$ nanofiber pastes with carbon black, compared to the paste without carbon black.