• Title/Summary/Keyword: Toxic

Search Result 5,385, Processing Time 0.032 seconds

Effect of Semisulcospira libertina Extracts from Different Extraction Processes on Liver Cell Toxicity and Ethanol Metabolism (간세포 독성과 에탄올 대사에서 추출 조건에 따른 다슬기 추출물의 효과)

  • Cho, Kyoung Hwan;Choo, Ho Jin;Seo, Min Gyun;Kim, Jong Cheol;Shin, Yu Jin;Ryu, Gi Hyung;Cho, Hee Young;Jeong, Chi-Young;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2017
  • Although Semisulcospira libertina is generally regarded as a supplement for the alleviation of alcohol hangover, little is known about its effects on cell metabolism. Therefore, this study was conducted to analyze the constituents of the extracts prepared using different extraction methods and to compare their biochemical properties. The amino acid contents were found to be much higher in acidic and enzymatic hydrolysates than hot water extracts from S. libertina. DPPH radical scavenging activities in acidic and enzymatic hydrolysates were higher than those of hot water extracts. Three types of S. libertina hydrolysate was added to HepG2 cells damaged by acetaminophen (AAP), after which the survival rate of HepG2 cell were measured. In addition, lactate dehydrogenase (LDH) activities in the culture media were evaluated. The survival rates of HepG2 cells were $77.0{\pm}4.3%$ and $81.5{\pm}1.3%$ at 3 h and 5h enzymatic hydrolysates, respectively. These cell survival rates were higher compared to those of the negative control group ($67.8{\pm}4.3%$) treated only with acetaminophen. Cellular toxicities induced by treatment with AAP were also significantly alleviated in response to treatment with the extracts of S. libertina. In addition, the activities of 2 key enzymes that metabolize ethanol, alcohol dehydrogenase and aldehyde dehydrogenase, were upregulated by 4.7- and 2.7-fold respectively in response to treatment with a 3 h enzymatic hydrolysate of S. libertina. Taken together, these results provide biochemical evidence of the method by which S. libertina exerts its biological functions, including the alleviation of alcohol hangover and the protection of liver cells against toxic insults.

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana (모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과)

  • Kim, Kyeongnam;Kim, Chaeeun;Park, Jungeun;Yoo, Jinsung;Kim, Woosung;Jeon, Hwang-Ju;Kim, Jun-Ran;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.354-361
    • /
    • 2021
  • Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.

Comparative Analysis of Nutritional Components of Zophobas atratus Larvae Raised with Artificial Diet and Wheat Branan (인공사료와 밀기울로 사육한 아메리카왕거저리 유충의 영양성분 비교분석)

  • Kim, Sun Young;Kwak, Kyu-Won;Lee, Kyeong Yong;Ko, Hyeon-Jin;Kim, Yong-Soon;Kim, Eunsun;Park, Kwanho;Yoon, Hyung Joo
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1109-1117
    • /
    • 2020
  • In order to verify whether Zophobas atratus is an edible insect, the nutrients and harmful substances of Z. atratus larvae reared with an artificial diet (AD) and wheat bran (WB) were compared and analyzed. Based on dry weight, the crude protein content of Z. atratus larvae reared with an AD was 62.4%, 1.4 times higher than that of those reared with WB (45.2%). The crude fat content was 20.5% in the AD group, 2.3 times less than in the WB group (46.3%). The leucine content was 1.4 times higher in the AD group (4.2%) than in the WB group (3.0%). The glutamic acid content of nonessential amino acids was 1.3 times higher in the AD group (7.0%) than in the WB group (5.3%). The oleic acid content was 1.4 times higher in the WB group (37.0%) than in the AD group (26.7%). The potassium content was 1.1 times higher in the AD group (975.9 mg/100 g) than in the WB group (872.9 mg/100 g). According to the results of the toxic substances analysis, the lead and cadmium levels of the WB and AD groups were standard for edible insects. Pathogenic microorganisms, such as E. coli and salmonella, were not detected in either group. According to the results of the present analysis of nutrition and harmful substances, Z. atratus larvae raised on an AD are safe and contain various nutrients. Therefore, such larvae could be useful sources of food and feed.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Clinical Features, Diagnosis, Management, and Outcomes of Idiopathic Pulmonary Fibrosis in Korea: Analysis of the Korea IPF Cohort (KICO) Registry

  • Jegal, Yangjin;Park, Jong Sun;Kim, Song Yee;Yoo, Hongseok;Jeong, Sung Hwan;Song, Jin Woo;Lee, Jae Ha;Lee, Hong Lyeol;Choi, Sun Mi;Kim, Young Whan;Kim, Yong Hyun;Choi, Hye Sook;Lee, Jongmin;Uh, Soo-Taek;Kim, Tae-Hyung;Kim, Sang-Heon;Lee, Won-Yeon;Kim, Yee Hyung;Lee, Hyun-kyung;Lee, Eun Joo;Heo, Eun Young;Yang, Sei Hoon;Kang, Hyung Koo;Chung, Man Pyo;Korea ILD Study Group,
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.185-194
    • /
    • 2022
  • Background: The Korea Interstitial Lung Disease Study Group has made a new nationwide idiopathic pulmonary fibrosis (IPF) registry because the routine clinical practice has changed due to new guidelines and newly developed antifibrotic agents in the recent decade. The aim of this study was to describe recent clinical characteristics of Korean IPF patients. Methods: Both newly diagnosed and following IPF patients diagnosed after the previous registry in 2008 were enrolled. Survival analysis was only conducted for patients diagnosed with IPF after 2016 because antifibrotic agents started to be covered by medical insurance of Korea in October 2015. Results: A total of 2,139 patients were analyzed. Their mean age at diagnosis was 67.4±9.3 years. Of these patients, 76.1% were males, 71.0% were ever-smokers, 14.4% were asymptomatic at the time of diagnosis, and 56.9% were at gender-age-physiology stage I. Occupational toxic material exposure was reported in 534 patients. The mean forced vital capacity was 74.6% and the diffusing capacity for carbon monoxide was 63.6%. Treatment with pirfenidone was increased over time: 62.4% of IPF patients were treated with pirfenidone initially. And 79.2% of patients were treated with antifiboritics for more than three months during the course of the disease since 2016. Old age, acute exacerbation, treatment without antifibrotics, and exposure to wood and stone dust were associated with higher mortality. Conclusion: In the recent Korean IPF registry, the percentage of IPF patients treated with antifibrotics was increased compared to that in the previous IPF registry. Old age, acute exacerbation, treatment without antifibrotics, and exposure to wood and stone dust were associated with higher mortality.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

Study on Skin pH Improvement Effect through Regulation of Na+/H+ Exchanger 1 (NHE1) Expression of Prunella vulgaris Extract and Its Active Compound, Caffeic Acid (꿀풀 추출물과 그 활성 화합물인 카페인산의 Na+/H+ exchanger 1 (NHE1) 발현 조절을 통한 피부 pH 개선 효과에 대한 연구)

  • No-June Park;Sim-Kyu Bong;Sang-A Park;Gi Hyun Park;Young Chul Ko;Hae Won Kim;Su-Nam Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • This study was conducted to discover substances that regulate skin surface acidification using human epidermal keratinocyte cell lines, and to investigate their effects on the moisturizing ability and skin barrier function of the stratum corneum. Prunella vulgaris (P. vulgaris) is an herb widely distributed in Northwest Africa and North America that has been studied for its anti-apoptotic, antioxidant, and anti-inflammatory effects. However, research on the regulation of NHE1 expression and the restoration of skin barrier function has not been conducted. Analysis of P. vulgaris revealed the presence of rosmarinic acid and caffeic acid as active ingredients, which were tested for toxicity in human epidermal keratinocyte cell lines (HaCaT), and showed no toxic effects were observed at high concentarion (100 ㎍/mL or 100 µM). It is known that sodium-hydrogen ion exchange pumps (NHE1) decrease in expression in aging skin to maintain the acidic pH of the stratum corneum, and it is hypothesized that this decrease plays an important role in the impaired restoration of skin barrier function in aging skin. P. vulgaris extract and caffeic acid increased the expression of NHE1 in keratinocytes, increased the expression of natural moisturizing factor (NMF) precursor filaggrin and ceramide synthesis enzyme serine palmitoyl transferase (SPT). In addition, P. vulgaris and caffeic acid decreased the extracellular pH of keratinocytes, indicating a direct effect on skin pH regulation. Taken together, these results suggest that P. vulgaris and caffeic acid can regulate skin pH through NHE1 modulation, and may help to restore skin barrier function by increasing NMF and ceramide synthesis. These results show the possibility that honeysuckle and caffeic acid can have a positive effect on skin health, and can be the basis for the development of new skin protection products using them.

Relative Toxicity of Abamectin to the redatoryMite Amblyseius womersleyi Schicha (Acari: Phytoseiidae) and Twospotted Spider MIte Tetranychus urticae Koch (Acari: Tetranychidae) (아바멕틴의 긴털이리응애(Amblyseius womersleyi Schicha)와 점박이응애(Tetranychus urticae Koch)에 대한 선택독성)

  • Park, C.G.;Lee, M.H.;Yoo, J.K.;Lee, J.O.;Choi, B.R.
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The relative toxicity of abamectin was assessed to the predatory mite Amblyseius womersleyi Schicha and to dicofol-resistant and -susceptible twospotted spider mite (TSM) Tetranychus urticae Koch in the laboratory. Abamectin was much les toxic to the predator than to the spider mite. At 0.12 and 0.6 ppm, all TSM adult females of the tow strains were killed within 48 h after dipping n the solutions. The lower concentrations (0.06 and 0.012 ppm) killed more than 77% of TSM female adults of the two strains at 120 h after treatment. However, abmectin did not significantly affect the survival and mobility of A. womersleyi female adults at a concentration of 0.12 ppm but the mortality was slightly increased up to 20~23% at 0.6 and 6 ppm. Abamectin did not significantly affect hatchability of one-day old TSM eggs at 0.06~0.6 ppm. The Four-day old eggs were much more susceptible to abamectin than one-day old eggs were. Within 0.006-6 ppm, abamectin did not affect the hatchability of A. womersleyi eggs and the development of resulting immature predators. When the predator female adults were dipped in 0.6 and 0.12 ppm solution, their reproduction was not affected, but at 6 ppm it was decreased by 35%. However, the reproduction of TSM reduced significantly at concentrations between 0.006 and 0.6 ppm. The differential toxicity of abamectin between TSM and the predator could be of practical importance in managing spider mite populations in the field. Abamectin at selective sublethal concentrations (i.e., 0.012~0.06 ppm) could be of value in adjusting predator/prey ratios in integrated management of spider mites.

  • PDF

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Acute toxicity of ethyl formate to nontarget organisms and reduction effect of sodium silicate on ethyl formate-induced phytotoxicity (에틸포메이트의 비표적생물에 대한 급성독성 및 sodium silicate의 약해저감 효과)

  • Kyeongnam Kim;Yubin Lee;Yurim Kim;Donghyeon Kim;Chaeeun Kim;Yerin Cho;Junyeong Park;Yongha You;Byung-Ho Lee ;Sung-Eun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.193-203
    • /
    • 2023
  • Ethyl formate (EF) is a naturally occurring insecticidal compound and is used to control pests introduced from abroad, in quarantine, by a fumigation method. In particular, it is mainly used as a substitute for methyl bromide and is less toxic to humans and less harmful to plants. This study aimed to investigate the possible acute toxicity of EF to useful organisms, and how to reduce phytotoxicity in watermelon, zucchini, and oriental melon. After fumigation with EF for 2 h, the LC50 values for earthworms, honey bees, and silkworms were 39.9, 7.09, and 17.9g m-3, respectively. The degree of susceptibility to EF was in the order of earthworms, silkworms, and honey bees based on the LC50 value, and EF fumigation induced stronger acute toxicity to honey bees. Phytotoxicity was observed in watermelon leaves treated with a concentration of 7.5 g m-3 EF, and when treated with a concentration of 10.0g m-3, it was confirmed that the edges of watermelon leaves were charred and seemed to be damaged by acids. Zucchini and melon, and other cucurbits, showed strong damage to the leaves when treated with a concentration of 10 g m-3, and sodium silicate, at concentrations of 10% and 20%, was used to reduce phytotoxicity. Therefore, acute toxicity towards nontarget organisms and phytotoxicity during the fumigation of EF should be reduced for efficient agricultural pest control.