DOI QR코드

DOI QR Code

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana

모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과

  • Kim, Kyeongnam (Department of Applied Biosciences, Kyungpook National University) ;
  • Kim, Chaeeun (Department of Integrative Biology, Kyungpook National University) ;
  • Park, Jungeun (Department of Integrative Biology, Kyungpook National University) ;
  • Yoo, Jinsung (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency(APQA)) ;
  • Kim, Woosung (School of Applied Biosciences, Kyungpook National University) ;
  • Jeon, Hwang-Ju (Department of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jun-Ran (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency(APQA)) ;
  • Lee, Sung-Eun (Department of Applied Biosciences, Kyungpook National University)
  • 김경남 (경북대학교 응용생명과학과) ;
  • 김채은 (경북대학교 농생명융합공학과) ;
  • 박정은 (경북대학교 농생명융합공학과) ;
  • 유진성 (농림축산검역본부 식물검역기술개발센터) ;
  • 김우성 (경북대학교 응용생명과학부) ;
  • 전황주 (경북대학교 응용생명과학과) ;
  • 김준란 (농림축산검역본부 식물검역기술개발센터) ;
  • 이성은 (경북대학교 응용생명과학과)
  • Received : 2021.08.31
  • Accepted : 2021.09.14
  • Published : 2021.09.30

Abstract

Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.

본 연구는 식물검역 분야에서 주요하게 사용되고 있는 메틸브로마이드 훈증제로 인해 발생하는 약해를 저감하기 위한 물질을 모델식물인 애기장대를 이용하여 스크리닝하였다. 사전연구를 통하여 메틸브로마이드 훈증제의 식물 독성 메커니즘으로 활성산소발생와 식물 성장 호르몬인 옥신의 식물체 내 분배억제효과가 발생하는 것을 바탕으로 하여, 약해 저감물질후보군으로 활성산소를 제거하는 역할을 하는 ROS scavenger 2종(NAC, GSH)과 옥신을 훈증제 처리 전 애기장대에 처리한 후 약해의 저감 정도를 육안평가와 더불어 관련 유전자의 발현을 확인하였다. 연구 결과 메틸브로마이드에 의해 유도된 약해는 옥신보다는 활성산소를 저감시키는 물질후보군들에서 약해 저감효과가 나타났다. 이 중 GSH을 이용하여 농도구배하여 전처리하였을 때, 5 mM GSH 전처리 후 메틸브로마이드 훈증시 약해 저감효과가 두드러졌다. GSH 전처리 시 식물체 내에 MBF1c와 HSP70 유전자 발현이 증가하는 것을 확인하였으며, 이는 메틸브로마이드 훈증으로 유도되는 약해를 방어하는 역할을 담당하였을 것이라고 평가된다. 따라서, 식물검역 훈증제 메틸브로마이드에 의해 발생하는 약해를 저감하는 데 GSH의 사용가능성을 평가하였으며, 이를 기반으로 다양한 식물체에 적용하여 수출입 시 약해로 인한 경제적 손실을 감소시킬 수 있기를 기대한다.

Keywords

Acknowledgement

본 연구는 농림축산검역본부 학술연구용역과제 (Z-1543086-2020-22-01)연구비를 지원받아 수행되었습니다.

References

  1. Bond EJ and HAU Monro. 1984. Manual of Fumigation for Insect Control. Food and Agriculture Organization of the United Nations. Rome.
  2. Burg SP and EA Burg. 1966. The interaction between auxin and ethylene and its role in plant growth. Proc. Natl. Acad. Sci. U. S. A. 55:262-269. https://doi.org/10.1073/pnas.55.2.262
  3. Cox D. 2017. Quarantine and Pre-shipment Uses of Methyl Bromide. The Australian Government Department of the Environment and Energy. Canberra, Australia.
  4. Dauphinee AN, JI Fletcher, GL Denbigh, CR Lacroix and A Gunawardena. 2017. Remodelling of lace plant leaves: antioxidants and ROS are key regulators of programmed cell death. Planta 246:133-147. https://doi.org/10.1007/s00425-017-2683-y
  5. Ding X, Y Jiang, L He, Q Zhou, J Yu, D Hui and D Huang. 2016. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci. Rep. 6:35424. https://doi.org/10.1038/srep35424
  6. Du H, N Wu, Y Chang, X Li, J Xiao and L Xiong. 2013. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol. Biol. 83:475-488. https://doi.org/10.1007/s11103-013-0103-7
  7. Harman JE, M Lay-Yee, DP Billing, CW Yearsley and PJ Jackson. 1990. Effects of methyl bromide fumigation, delayed cooling, and controlled atmosphere storage on the quality of 'Red-gold' and 'Fantasia' nectarine fruit N. Z. J. Crop Hortic. Sci. 18:197-203. https://doi.org/10.1080/01140671.1990.10428095
  8. Hasanuzzaman M, K Nahar, TI Anee and M Fujita. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23:249-268. https://doi.org/10.1007/s12298-017-0422-2
  9. Jahan S, A Zahra, U Irum, N Iftikhar and H Ullah. 2014. Protective effects of different antioxidants against cadmium induced oxidative damage in rat testis and prostate tissues. Syst. Biol. Reprod. Med. 60:199-205. https://doi.org/10.3109/19396368.2014.912363
  10. Kim K, C Kim, J Park, HJ Jeon, YJ Park, YH Kim, JO Yang and SE Lee. 2021. Transcriptomic evaluation on methyl bromide-induced phytotoxicity in Arabidopsis thaliana and its mode of phytotoxic action via the occurrence of reactive oxygen species and uneven distribution of auxin hormones. J. Hazard. Mater. 419:126419. https://doi.org/10.1016/j.jhazmat.2021.126419
  11. Kim K, YH Lee, G Kim, BH Lee, JO Yang and SE Lee. 2019. Ethyl formate and phosphine fumigations on the two-spotted spider mite, Tetranychus urticae and their biochemical responses. Appl. Biol. Chem. 62:50. https://doi.org/10.1186/s13765-019-0458-9
  12. Kumar D and S Chattopadhyay. 2018 Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. J. Exp. Bot. 69:3729-3743. https://doi.org/10.1093/jxb/ery166
  13. Li L, G Zhang, B Li, JO Yang, MG Park and T Liu. 2020. Postharvest treatment of mandarin fruit using a combination of methyl bromide and phosphine against Bactrocera dorsalis (Diptera: Tephritidae). Pest Manag. Sci. 76:1938-1943. https://doi.org/10.1002/ps.5726
  14. Park MG, CG Park, JO Yang, GH Kim, Y Ren, BH Lee and DH Cha. 2020. Ethyl formate as a methyl bromide alternative for phytosanitary disinfestation of imported banana in Korea with logistical considerations. J. Econ. Entomol. 113:1711-1717. https://doi.org/10.1093/jee/toaa088
  15. Ramirez L, CG Bartoli and L Lamattina. 2013. Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J. Exp. Bot. 64:3169-3178. https://doi.org/10.1093/jxb/ert153
  16. Ristaino JB and W Thomas. 1997. Agriculture, methyl bromide, and the ozone hole: Can we fill the gaps? Plant Dis. 81:964-977. https://doi.org/10.1094/pdis.1997.81.9.964
  17. Shi H, L Chen, T Ye, X Liu, K Ding and Z Chan. 2014. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82:209-217. https://doi.org/10.1016/j.plaphy.2014.06.008
  18. Suzuki N, S Bajad, J Shuman, V Shulaev and R Mittler. 2008. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem. 283:9269-9275. https://doi.org/10.1074/jbc.M709187200
  19. UNEP. 2019. Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer, thirteenth ed. United Nations Environment Programme. Nairobi, Kenya.
  20. Xue J, D Luo, D Xu, M Zeng, X Cui, L Li and H Huang. 2015. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. Plant J. 83:375-387. https://doi.org/10.1111/tpj.12902
  21. Zhou Y, M Diao, JX Cui, XJ Chen, ZL Wen, JW Zhang and HY Liu. 2018. Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. J. Integr. Agric. 17:2257-2272. https://doi.org/10.1016/s2095-3119(18)62068-4