• Title/Summary/Keyword: Towing Rope

Search Result 28, Processing Time 0.028 seconds

Dynamic Modeling and Observer-based Servomechanism Control of a Towing Rope System

  • Tran, Anh Minh D.;Kim, Young Bok
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.23-30
    • /
    • 2016
  • This paper presents a control-oriented dynamical model of a towing rope system with variable-length. In this system, a winch driven by a motor's torque uses the towing rope to pull a cart. In general, it is a difficult and complicated process to obtain an accurate mathematical model for this system. In particular, if the rope length is varied by operating the winch, the varying rope dynamics needs to be considered, and the key physical parameters need to be re-identified... However, real time parameter identification requires long computation time for the control scheme, and hence undesirable control performance. Therefore, in this article, the rope is modeled as a straight massless segment, with the mass of rope being considered partly with that of the cart, and partly as halfway to the winch. In addition, the changing spring constant and damping constant of the towing rope are accounted for as part of the dynamics of the winch. Finally, a reduced-order observer-based servomechanism controller is designed for the system, and the performance is evaluated by computer simulation.

Dynamics Identification and Robust Control Performance Evaluation of Towing Rope under Rope Length Variation

  • Tran, Anh-Minh D.;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Lately, tugboats are widely used to maneuver vessels by pushing or towing them where tugboats use rope. In order to correctly control the motion of tugboat and towed vessel, the dynamics of the towline would be well identified. In real application environment, the towing rope length changes and the towing load is not constant due to the various sizes of towed vessel. And there are many ropes made by many types of materials. It means that it is not easy to obtain rope dynamics, such that it is too difficult to satisfy the given control purpose by designing control system. Thus real time identification or adaptive control system design method may be a solution. However it is necessary to secure sufficient information about rope dynamics to obtain desirable control performance. In this paper, the authors try to have several rope dynamic models by changing the rope length to consider real application conditions. Among them, a representative model is selected and the others are considered as uncertain models which are considered in control system design. The authors design a robust control to cope with strong uncertain and nonlinear property included in the real plant. The designed control system based on robust control framework is evaluated by simulation.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.

Performance of an Active Stimulating Device Using a Rope Kite or Array in the Cod End to Reduce Juvenile by-catch

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.182-189
    • /
    • 2010
  • An active stimulating device (ASD) using a rope apparatus may operated by the flow of turbulence inside a cod end, generating variable stimuli in addition to flow-related effects to minimize the by-catch of juvenile fishes. Preliminary testing involved a hydrodynamic effect inside the cod end with a rotating rope kite or conical rope array to generate variable stimuli (visual stimuli, water flow, or physical contact with fish) to change fish position. The experimental rope kite offered more choice in rotating period and range of sweeping action; adjusting the towing line or flow velocity helped to drive fish toward the net panel and encouraged escape. The conical shape of the rope array in the cod end helped to clear a path for fish by disturbing the rigging and providing more contrast between objects, preventing an optomotor response. This enabled more black porgy to be herded toward the net at an early stage of towing. Therefore, either a conical rope array or a rotating rope kite can be used as an effective ASD to prevent juvenile by-catch.

The gear shape and cross section of sweep at mouth of a bottom trawl (저층 트롤의 그물입구 형상과 소해 단면적)

  • Park, Hae-Hoon;Cho, Bong-Kon;Ko, Gwang-Su;Chang, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.2
    • /
    • pp.120-128
    • /
    • 2008
  • Estimation of the gear shape and cross section of sweep at mouth of a bottom trawl net was described and applied to the field experiments obtained with the Scanmar system. The shape of the trawl net from wingend to the beginning of codend was assumed to be part of an elliptic cone of which the cross section was ellipse, and that of the float rope be of form $y_f=a_fx^{bf}$. In case of a bottom trawl with warp 180m long, the radius of ellipse, the cross section of sweep at mouth, the eccentricity of the ellipse, the inclination angle of float rope and the contribution of the side panel to net height were estimated in accordance with towing speed. The horizontal radius of the upper ellipse increased with increasing towing speed, the eccentricity of it became slightly bigger as increasing the towing speed which meant the shape of it being flat. And the inclination angle of the float rope was about between 7 and 12 degrees in case of the above bottom trawl.

A Development on the Eye Splice's Safety Standards of Synthetic Fibre Ropes for Towing Vessel (예인삭용 합성섬유로프의 아이스플라이스 안전기준 개발)

  • Hwang, Jeong-Il;Lee, Hee-Joon;Lee, Kyoung-Hoon;Kim, Kyoung-Woo
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.36
    • /
    • pp.28-42
    • /
    • 2014
  • 본 연구는 예인선 해양사고로 인한 사망사건 중 예인삭 절단사건이 큰 비중을 차지하고 있어 인명사고 예방이 시급한 가운데 예인 로프의 아이스플라이스에 대한 기준이 현재 국내에 마련되어 있지 않아 본선의 임의대로 제작?사용하는 실정이다. 이에 우리 공단에서 수검 중인 예인선을 대상으로 예인선에서 주로 사용하는 예인삭의 종류와 구조, 재질 등에 대한 국내 사용실태를 조사하고, 조사를 바탕으로 선정된 로프의 인장강도 시험을 통하여 스플라이스 횟수에 따른 유의성 평가를 시행하며, 국내 외 유사 기준 및 표준을 조사 분석하여 최종적으로 국내에서 적용할 수 있는 예인삭 아이스플라이스 기준을 제시하였다.

  • PDF

Measurements of Midwater Trawl System and Dynamic Characteristics (중층 트롤 시스템의 계측 및 운동 특성)

  • 이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.294-301
    • /
    • 1998
  • Towing performance of a midwater trawl system was examined aboard the training ship KAYA(2900ps) at the East Sea using the midwater trawl gear that had been designed and manufactured in accordance with the vessel. In this experiment, the trawl system data, the towing speed, the length and tension of the warp, net mouth height, and the depth of otter boards and net were measured and analyzed. The results are as follows: 1. In case of heaving in the warp with constant towing speed, the tension was suddenly increased and then again was reduced and after returned to the original steady state tension. At this time, net height was reduced a bit by ascension of ground rope, but returned to it’s original value. In the case where the warp was paid out, the tension was suddenly decreased and after increased and then returned to the tension of the original state, and the net height was greatly increased instantly by the sinking of the ground rope and then returned to the steady state 2. In the case of increased towing speed mm constant warp length, the tension was increased, and reducing the net height, the gear depth was decreased. On the other hand, in the case where towing speed was reduced, the tension was reduced and the gear depth and net height was increased. 3. Otter boards show a swing motion in the scope of 5~ 10m continuously. Otter boards responded to the state change of the trawl system at first, and then the motion of the net appeared. 4. The depth of net center was about 20m deeper than that of the otter boards, it shows about 0.4 times the warp length at the 4knots towing speed.

  • PDF

Study on the Midwater Trawl Available in the Korean Waters - III (한국근해에 있어서의 중층트로올의 연구 - III)

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 1987
  • The authors carried out an experiment to determine the vertical opening of the midwater trawl, which is the same used in the former experiment in this series of studies. To determine the vertical opening of otter board and front weight, three fish finders were used. A 200 KHz fish finder set on board the research vessel was used to sound the depth of water. A transmitter of 50 KHz fish finder was set through the shoe plate of otter board to determine the height of otter board from the sea bed, and a transmitter of another 50 KHz fish finder was set downwardly on the net pendant right before the front weight to determine the height of weight from the sea bed. The depth of otter board and weight were calculated by subtract the height of those from the depth of water, respectively. To determine the vertical opening of mouth, a transmitter of net recorder was set on the head rope and the vertical opening of that to ground rope was directly read on the recording paper. The results obtained can be summarized as follows: 1. The rate of the depth of otter board to the length of warp was in the range of 0.44 to 0.25, and the depth was linearly shoaled about 5m per 0.1m/sec of the towing speed or per 20rpm of the main engine. The rate of the observed depth to the calculated depth of otter board was in the range of 0.92 to 0.080 with a decreasing tendancy in accordance with the increase of towing speed. 2. The depth of head rope was 2 to 3m deeper than that of otter board, and the vertical opening of net mouth was in the range of 22 to 19m, with a decreasing tendancy in accordance with the increase of towing speed, 3. The difference of depth between front weight and otter board was about 20m and 22m respectively in the length of warp 100m and 150m without distinct change in accordance with the towing speed. The depth of front weight was 2 to 3m shallower than that of ground rope. 4. The changing range of depth of head rope according to the revolution of main engine was about 4m per 20rpm.

  • PDF

Drag Characteristics According to Ground Rope and Seabeds in the Bottom Trawl (저층트롤의 발줄 및 저질의 종류에 따른 저항특성)

  • 신정욱;이주희;권병국
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.58-68
    • /
    • 2002
  • The model experiments for the Eastern sea bottom trawl were conducted for the 3 types of ground ropes and 2 types of seabeds to examine drag characteristics according to towing speed. The model net was based on the net of trawler with 750ps and made by 1/78 of a full scale net. This experiments focused on the drags for 3 types of ground rope, the serving wire, the original and the chain types and 2 types of seabeds, mud and sand of bottom. The results obtained are summarized as follows 1. In the case of the sand bottom, the drags by 3 types of ground rope were orderly increased in turn of the chain, the serving wire and the original type. But, in the case of the mud bottom, the drag of the original type is higher than that of the serving wire type and less than the chain type. 2. In the case of the serving wire type of ground rope, the drags by the diameters of ground rope, ø 1.3, ø 1.9, ø 2.6 and ø 3.25 were increased respectively by 23g, 25g, 32g and 42g at the towing speed of 0.4m/s. 3. The drags of ground ropes were increased exponentially in proportion to the towing speed, in the same way in all of three types of ground rope. 4. The ratios of drag of ground rope against that of the trawl net by the type of ground rope at the towing speed of 0.4m/s on the mud bottom were 0.69 in the chain type, 0.64 in the serving wire type and 0.67 in the original type respectively. 5. The Coefficient of drag($C_d$) by type of ground rope according to the towing speed were 10.0~56.7, 3.0~l6.0 and 1.5~8.5 respectively in turn of the chain type, the serving wire type and the original type on the mud bottom, and that on the sand bottom were 10.0~60.0, 3.0~14.0 and 1.2~6.0 respectively In turn of the chain type, the serving wire type and the original type.

Efficiency of Model Oil Fences for One Vessel Using a Physical Experiment and Numerical Calculation (모형 실험과 수치 해석을 통한 단선용 모형 오일펜스의 성능 해석)

  • Kim, Tae-Ho;Jang, Duck-Jong;Yang, Kyung-Uk;Na, Sun-Chol;Kim, Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.140-149
    • /
    • 2008
  • This study evaluated the efficiency of an oil fence and spreading devices for one vessel in a towing tank. A series of model experiments and numerical calculations were conducted using an existing oil fence for two vessels and a new method for one vessel. Models of the oil fence and spreading devices were constructed on $1/20^{th}$ scale from waterproofed nylon fabric and canvas. The tensions acting on the model of the oil fences and the horizontal distance between the spreading devices were calculated numerically while the oil fences were being towed. The results were extremely close to the results of the model experiments. The ratio of the opening width to the total length of the oil fence, which shows the efficiency of the oil fence for one vessel, was 49.7% in 0.4 m/sec. Therefore, the proposed oil fence system should be very useful for oil containment at sea. As the opening width of the oil fence is not proportional to the length of the towing rope, it may be reasonable to maintain the towing rope at approximately 100 m. Furthermore, a reasonable towing speed, when operating the oil fence for one vessel equipped with spreading devices, was within 0.4 m/sec.