Turbulent fluxes of heat, water vapor, and CO2 have been measured since August, 2003 at Dasan Station (78o 55’ N, 11o50’E) in the Arctic. These data can allow us to better understand the interactions between the Polar ecosystems and the atmosphere together with those at King Sejong Station in the Antarctic. Due to the buildings and measurement platforms around the flux tower, it is required to evaluate how they influence measured flux data. By using one-year turbulence statistics data and footprint model, flux footprint climatology was analyzed together with data availability. The upwind distance of source area ranged from 150 to 300 m, where the buildings and measurement platforms existed. However, flow distortion due to them may be not a major factor to reduce the data availability significantly. Based on, the dominant wind direction of SW and footprint climatology, the location of flux tower is considered suitable for flux measurement.
Park, Juhan;Lee, Seung-Jae;Kang, Minseok;Kim, Joon;Yang, Ilkyu;Kim, Byeong-Guk;You, Keun-Gi
Korean Journal of Agricultural and Forest Meteorology
/
v.20
no.1
/
pp.47-56
/
2018
Providing high-quality meteorological observation data at sites that represent actual farming environments is essential for useful agrometeorological services. The Automated Agricultural Observing System (AAOS) of the Korean Meteorological Administration, however, has been deployed on lawns rather than actual farm land. In this study, we show the inaccuracies that arise in AAOS data by analyzing temporal and vertical variation and by comparing them with data recorded by the National Center for AgroMeteorology (NCAM) tower that is located at an actual farming site near the AAOS tower. The analyzed data were gathered in August and October (before and after harvest time, respectively). Observed air temperature and water vapor pressure were lower at AAOS than at NCAM tower before and after harvest time. Observed reflected shortwave radiation tended to be higher at AAOS than at NCAM tower. Soil variables showed bigger differences than meteorological observation variables. In August, observed soil temperature was lower at NCAM tower than at AAOS with smaller diurnal changes due to irrigation. The soil moisture observed at NCAM tower continuously maintained its saturation state, while the one at AAOS showed a decreasing trend, following an increase after rainfall. The trend changed in October. Observed soil temperature at NCAM showed similar daily means with higher diurnal changes than at AAOS. The soil moisture observed at NCAM was continuously higher, but both AAOS and NCAM showed similar trends. The above results indicate that the data gathered at the AAOS are inaccurate, and that ground surface cover and farming activities evoke considerable differences within the respective meteorological and soil environments. We propose to shift the equipment from lawn areas to actual farming sites such as rice paddies, farms and orchards, so that the gathered data are representative of the actual agrometeorological observations.
Journal of The Korean Society of Agricultural Engineers
/
v.57
no.3
/
pp.109-120
/
2015
Spatial heterogeneous characteristics of solar radiation energy from Climate Change gives rise to energy imbalance in the general ecological system including water resources. This study is to estimate the $CO_2$ flux of South Korea using Terra MODIS image and to assess the reliability of MODIS data from the ground measured $CO_2$ flux by eddy covariance flux tower data at 3 locations (two at mixed forest area and one at rice paddy area). The MODIS Gross Primary Productivity (GPP) product (MOD17A2), 8-day composite at 1-km spatial resolution was adopted for the spatial $CO_2$ flux generation. The MOD17A2 data by noise like cloud and snow in a day were tried to fill by Inverse Distance Weighted (IDW) method from valid pixels and the damping effect of MOD17A2 data were corrected by Quality Control (QC) flag. The MODIS $CO_2$ flux was estimated as the sum of GPP and Re (ecosystem respiration) by Lloyd and Taylor method (1994). The determination coefficient ($R^2$) between MODIS $CO_2$ and flux tower $CO_2$ for 3 years (2011~2013) showed 0.55 and 0.60 in 2 mixed forests and 0.56 in rice paddy respectively. The $CO_2$ flux generally fluctuated showing minus values during summer rainy season (from July to August) and maintaining plus values for other periods. The MODIS $CO_2$ flux can be a useful information for extensive area, for example, as a reliable indicator on ecological circulation system.
The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.
We have examined the random error of eddy covariance (EC) measurements on the basis of two-tower approach during daytime. Two EC towers were placed on the grassland with different vegetation density near Gumi-weir. We calculated the random error using three different methods. The first method (M1) is two-tower method suggested by Hollinger and Richardson (2005) where random error is based on differences between simultaneous flux measurements from two towers in very similar environmental conditions. The second one (M2) is suggested by Kessomkiat et al. (2013), which is extended procedure to estimate random error of EC data for two towers in more heterogeneous environmental conditions. They removed systematic flux difference due to the energy balance deficit and evaporative fraction difference between two sites before determining the random error of fluxes using M1 method. Here, we introduce the third method (M3) where we additionally removed systematic flux difference due to available energy difference between two sites. Compared to M1 and M2 methods, application of M3 method results in more symmetric random error distribution. The magnitude of estimated random error is smallest when using M3 method because application of M3 method results in the least systematic flux difference between two sites among three methods. An empirical formula of random error is developed as a function of flux magnitude, wind speed and measurement height for use in single tower sites near Nakdong River. This study suggests that correcting available energy difference between two sites is also required for calculating the random error of EC data from two towers at heterogeneous site where vegetation density is low.
The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.
The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.
Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.
In this study, low- and high-frequency structure behaviors were identified and a systematic analysis procedure was proposed using noisy GPS data from a 165-m-high tower in ${\dot{I}}stanbul$, Turkey. The raw GPS data contained long- and short-periodic position changes and noisy signals at different frequencies. To extract the significant results from this complex dataset, the general structure and components of the GPS signal were modeled and analyzed in the time and frequency domains. Uncontrolled jumps and deviations involving the signal in the time domain were pre-filtered. Then, the signal was converted to the frequency domain after applying low- and high-pass filters, and the frequency and periodic component values were calculated. The spectrum of the tower motion obtained from the filtered GPS data had dominant peaks at a low frequency of $1.15572{\times}10-4Hz$ and a high frequency of 0.16624 Hz, consistent with two equivalent GPS datasets. Then, the signal was reconstructed using inverse Fourier transform with the dominant low frequency values to obtain filtered and interpretable clean signals. With the proposed sequence, processing of noisy data collected from the GPS receivers mounted very close to the structure is effective in revealing the basic behaviors and features of buildings.
Installing accelerometers in a building is an effective way to know how the building shakes when an earthquake happens. In this paper, we will introduce an example of an analysis that captures the acceleration reduction effect of the vibration damping device using data observed by the accelerometer at Roppongi Hills Mori Tower in Minato-ku, Tokyo, during the Great East Japan Earthquake on March 11, 2011. Moreover, as the latest effort, from the standpoint of a developer who builds and operates a number of high-rise buildings in Japan, where frequent earthquakes are experienced, a system for real-time processing of accelerometer data was developed to instantly diagnose the degree of damage to high-rise buildings, and the actual system of earthquake damage health monitoring is discussed. This system is currently in operation in twelve high-rise buildings including Roppongi Hills Mori Tower.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.