• 제목/요약/키워드: Tower Structure

검색결과 435건 처리시간 0.028초

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.

강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰 (A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model)

  • 이윤우;최준호;강성용;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제5권3호
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로- (Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method -)

  • 김종옥;고재군
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상 (Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry)

  • 이상윤;노삼영
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

RC 대형 냉각탑 셀의 손상추정에 관한 연구 (A Study on Damage-Assessment of RC Large Cooling Tower Shells)

  • 노삼영
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.279-286
    • /
    • 2004
  • An accumulated crack damage which propagates progressively with time was frequently observed on several engineering structures, This paper numerically demonstrates this damage process on large cooling tower shells under thermal and wind loads. Damage states under varying loads are investigated and the influence of this progressive damage process on the life-cycle of cooling towers discussed. The paper presents briefly some fundamentals of the geometrically and physically non-linear numerical analysis employed for reinforced concrete, especially concerning the models used for concrete, steel reinforcement and the bond between them. As a numerical example an existing cooling tower with noticeable meridian crack damage is analysed. The existing damage state of the cooling tower is determined by quasi-static analyses for temperature, hygric and cyclic wind leading. The change in the dynamical behaviour of the structure as mirrored in its natural frequencies and mode shapes is presented and discussed. Finally, the example shows that such damage processes develop progressively over the life-time of the structures.

  • PDF

D댐의 취수탑 피뢰설비 구축방안 검토 (To examine the construction plan of the lightening rod equipment for the intake tower of D-dam)

  • 홍성택;이은춘;신강욱;이남영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.290-292
    • /
    • 2003
  • The intake tower of D-dam located in a mountainous area positioned in the left side of the dam and its structure installed alone on the water surface then, can become target of direct lightening. To protect the intake tower from the direct lightening and indirect-lightening, lightening rod installed in the top area of the intake tower and ground pole laid under the surrounding ground. however, because the surrounding ground almost consists of a rock, it is very difficult to obtain the grounding resistance. It is main object to examine the construction plan of the optimum lightening rod equipment and ground pole with measuring the earth specific resistance of the around of the intake tower which is the scheduled area to lay the ground pole with the Wenner's 4-electric pole method and the Schlumberger's method. and using the analysis tool, ESII.

  • PDF

상시계측을 통한 해상기상탑의 동적특성 평가 (Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements)

  • 이계희;레 꾸억 끄영;곽대진
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

버켓기초를 가진 해상풍력타워의 지반-구조물 상호작용해석 (Soil-structure interaction analysis for the offshore wind tower with bucket foundation)

  • Lee, Gyehee;Kim, Sejeong;Phu, Tranduc
    • 한국재난정보학회 논문집
    • /
    • 제10권2호
    • /
    • pp.244-252
    • /
    • 2014
  • 본 연구에서는 버켓기초로 지지된 해상풍력타워의 지진응답을 지반-구조물 상호작용을 고려하여 해석하였다. 해석프로그램으로는 SASSI를 사용하였으며 연약지반에 대해 생성된 인공지진파를 입력으로 사용하였다. 버켓기초의 형상과 강도를 매개변수로 하여 각 매개변수들의 영향을 파악하였다. 구조물의 응답은 타워의 하부와 나셀위치에서 얻어졌으며 응답스펙트럼으로 비교하였다. 해석결과 형상비, 버켓의 강도, 지반의 강도에 따라서 기초부와 나셀부에서 다른 경향의 응답을 보였다. 그러나 이러한 모든 지반-구조물상호작용의 고려는 암반으로 가정한 거동에 비하여 월등히 큰 응답 값을 보여 이의 고려가 버켓기초를 가진 해상풍력타워의 지진거동에 큰 영향을 미치는 것을 파악할 수 있었다.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.