• 제목/요약/키워드: Tower Structure

검색결과 435건 처리시간 0.023초

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

부산 신항만 욕망산 경관계획 (Mt. Yokmang Landscape Planning in Busan New Port)

  • 김충식
    • 한국조경학회지
    • /
    • 제33권6호
    • /
    • pp.127-139
    • /
    • 2006
  • Mt. Yokmang landscape design awarded first in [North container terminal site furtherance construction in Busan new port], design competition sponsoring in the Korea Container Terminal Authority in 2005. Design guideline was to propose the symbol of new port and to establish landscape plan in consideration of view and geological location. Because landscape plan required establishment of restoration plan for cutting slope, Mt. Yokmang became the major object. The purpose of planning are as follows. The first purpose is to minimize existent natural environment damage, and the second, to connect with ambit and create new image. The third is to provide place of rest and interchange for local resident. Reflecting stratum structure and landscape characteristics, cutting slope consisted of [utilization slope], [presentation slope], [landscape slope], and [ecological slope]. Vegetation design applied ecological restoration method through restoration of stratum, and eve environment-friendly afforestation, planned program that can connect area with existing ecosystem. In process that decides form of the cutting slope, analyze view structure and visual exposure in various access routes, sensitivity etc. was accomplished. Also, symbolic tower(Ocean Polaris) that presents in architecture and landscaping features, night landscape planning could gain synergy effect by keeping consistence with landscape and ecological planning. Passing through final design and construction process, I expect that the Mt. Yokmang will be a new landmark in Busan new port.

RF 스퍼터링법을 이용한 $LiNbO_3/Si$구조의 전기적 및 구조적 특성 (Electrical and Structural Properties of $LiNbO_3/Si$ Structure by RF Sputtering Method)

  • 이상우;김광호;이원종
    • 한국전기전자재료학회논문지
    • /
    • 제11권2호
    • /
    • pp.106-110
    • /
    • 1998
  • The $LiNbO_3$ thin films were prepared directly on Si(100) substrates by conventional RF magnetron spurttering system for nonvolatile memory applications. RTA(Rapid Thermal Annealing) treatment was performed for as-deposited films in an oxygen atmosphere at 600 $^{\circ}C$ for 60 s. The rapid thermal annealed films were changed to poly-crystalline ferroelectric nature from amorphous of as-deposition. The resistivity of the ferroelectric $LiNbO_3$ film was increased from a typical value of $1{\sim}2{\times}10^8{\Omega}{\cdot}cm$ before the annealing to about $1{\times}10^{13}{\Omega}{\cdot}cm$ at 500 kV/cm and reduced the interface state density of the $LiNbO_3/Si$ (100) interface to about $1{\times}10^{11}/cm^2{\cdot}eV$. Ferroelectric hysteresis measurements using a Sawyer-Tower circuit yielded remanent polarization ($P_r$) and coercive field ($E_c$) values of about 1.2 ${\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF

소형 독립형 풍력발전기의 진동 모니터링 및 출력 성능 평가 (Vibration Monitoring and Power Performance Evaluation of a Small Stand-alone Wind Turbine Generator)

  • 유능수;김윤호;김석현
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2007
  • Vibration performance of a 6 kW stand-alone wind turbine(W/T) generator is investigated under the wind environment of Daegwanryung mountain area. In the W/T, wind condition, power performance and structural stability are correlated each other An integrated monitoring system which consists of accelerometers, anemometers, power meters and auxiliary sensors for atmospheric data are constructed to measure the required data simultaneously. Based upon the data acquired over a long period of time, vibration performance of the W/T structure is estimated with annual wind data and generating power performance. Within the operating speed range, possibility of severe nitration is diagnosed. Vibration sources are identified and countermeasures are proposed. The goal of the study is to offer the basic information on W/T vibration performance at the design stage of a small stand alone W/T structure.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정 (Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method)

  • 김상범;이완수;윤정방
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구 (Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes)

  • 이운호;장원태;김종수;이상남
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

지진에 의한 천룡사지 삼층석탑의 동적거동 특성 (Dynamic Behavior Characteristics of Three-Story Stone Pagoda at Cheollongsa Temple Site by Earthquake)

  • 김호수;김동관;전건우
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.305-314
    • /
    • 2021
  • The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.

Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower

  • Wu, Xiangguo;Zhang, Xuesen;Zhang, Qingtan;Zhang, Dong;Yang, Xiaojing;Qiu, Faqiang;Park, Suhyun;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.407-421
    • /
    • 2022
  • Prefabricated hybrid wind turbine towers (WTTs) are promising due to height increase. This study proposes the use of ultra-high performance concrete (UHPC) to develop a new type of WTT without the need to use reinforcement. It is demonstrated that the UHPC WTT structure without reinforcing bars could achieve performance similar to that of reinforced concrete WTTs. To simplify the design of WTT, a design approach for the calculation of stresses at the horizontal joints of a WTT is proposed. The stress distribution near the region of the horizontal joint of the WTT structure under normal operating conditions and different load actions is studied using the proposed approach, which is validated by the finite element method. A further parametric study shows that the degree of prestressing and the bending moment both significantly affect the principal stress. The shear-to-torsion ratio also shows a significant influence on the principal tensile stress.

RTK GPS를 이용한 거대구조물 변위 분석 (Displacement Analysis of Enormous Structure using RTK GPS)

  • 박운용;홍순헌;차성렬;김정동
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.97-101
    • /
    • 2003
  • Among GPS methods, first of all, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when we measured the behavior of main tower of a suspension bridge by using RTK GPS method and IMU, which was an inertia navigation system. Comparing a deviation between observation value using IMU and RTK GPS, X axis was 1mm, Y axis 1mm and Z axis 2.21mm. It turned out that it was possible to monitor and measure structures by using RTK GPS method. Besides, in order to manage the structures and prevent their disaster, the transformed monitoring, which used dynamic RTK GPS measurement method, was applied in real time. It was verified that it could be used as transformed monitoring measurement method for massive structures.

  • PDF