• Title/Summary/Keyword: Tourism Big-data

Search Result 149, Processing Time 0.024 seconds

Tourism policy establishment plan using geographic information system and big data analysis system -Focusing on major tourist attractions in Incheon Metropolitan City- (지리정보시스템과 빅데이터 분석 시스템을 활용한 관광 정책수립 방안 -인천광역시 주요 관광지 중심으로-)

  • Min, Kyoungjun;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.13-21
    • /
    • 2021
  • This study aims to analyze tourist inflow trends and consumption patterns using a geographic information system and big data analysis system. Songdo Central Park and Chinatown were selected among the major tourist destinations in Incheon, and floating population analysis and card sales analysis were conducted for one month in June 2017. The number of tourists visiting Songdo Central Park from metropolitan cities across the country was highest in the order of Incheon Metropolitan City, Gyeonggi-do, and Seoul Metropolitan City, and the proportion of foreign tourists was the highest in China. The number of card consumption used by Chinatown tourists was 12.4% higher for men than for women, and the amount of card consumption was also higher for men by 18%. This study has implications for proposing a strategic plan for tourism policy by analyzing the inflow trend and consumption pattern of tourists and deriving major issues in the establishment of tourism policy. Based on this study, it is expected that it can be helpful in improving the construction of tourism infrastructure in the future.

Understanding the Food Hygiene of Cruise through the Big Data Analytics using the Web Crawling and Text Mining

  • Shuting, Tao;Kang, Byongnam;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.

Design of Smart Tourism in Big Data (빅데이터 기반 스마트 투어리즘의 설계)

  • Jang, Jae-Youl;Kim, Do-Moon;Choi, Chul-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.637-644
    • /
    • 2017
  • This paper is based on the information left on SNS by the experienced tourist and, First, the tourist gathers various tourist information from SNS through Smart Tourism as suggested, Second, providing scheduling information for future tourist and the future tourist can modify and apply the information from experienced tourist. Third, the goal of this study is to design virtual tourism service based on above services where future tourist can post and modify tourism scheduling. Therefore, it is to obtain the effect of providing reliable tourism service to maximize the satisfaction of the tour through matching process between experience experiences and experience schedule.

A Study on Trends Related to Boryeong Mud Festival Using Tourism Big Data Analysis (관광 빅데이터 분석을 활용한 보령머드축제 관련 동향 탐색 연구)

  • Han Jangheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.165-175
    • /
    • 2023
  • Boryeong Mud Festival has become a representative local festival that both domestic and foreign tourists can enjoy together. In addition, it is one of the usual hands-on marine festivals in Korea that can be enjoyed with one mind at the Boryeong Mud Festival, regardless of race, age, and language. This study explored the overall perception and trends of the Boryeong Mud Festival using big data extracted online from the Boryeong Mud Festival. First, keywords such as Chungnam, hosting, summer, reporter, experience, opening ceremony, performance, operation, news, tourist, opening, event, and festival were frequently exposed online. Second, due to centrality analysis, the centrality of festival experience programs and performances, opening ceremonies, and Boryeong mayor was high. Third, due to the CONCOR analysis, five clusters of meaningful keywords related to the Boryeong Mud Festival were formed.

Analysis of Review Data of 'Tamna' Franchisees to Promote Sustainable Travel in Jeju City (제주시의 지속가능한 여행 활성화를 위한 지역화폐 '탐나는전' 가맹점의 리뷰 데이터 분석)

  • Sehui Baek;Sehyoung Kim;Miran Bae;Juyoung Kang
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 2022
  • After COVID-19, interest in "sustainable tourism" increased, and the number of tourists who wanted to experience "sustainable tourism" also increased. However, there is a problem that the programs and methods for 'sustainable tourism' are not specific and diverse. In addition, since most of the interests of "sustainable tourism" focus on "environment" and "carbon neutrality," there are not many programs or government policies that can contribute to the community. Therefore, in this study, news data and review data were analyzed to suggest a method for promoting 'sustainable tourism'. First, in this study, major themes of sustainable travel were derived through news big data analysis. Through this analysis, policy themes and events of 'sustainable tourism' were derived. By analyzing news big data related to "sustainable tourism," we would like to analyze the reasons why sustainable travel has not been activated in Korea. Finally, in order to promote sustainable travel in Jeju island, we analyzed user review data of Jeju local currency, and propose a idea to coexist with the local community.

A Study on the de-identification of Personal Information of Hotel Users (호텔 이용 고객의 개인정보 비식별화 방안에 관한 연구)

  • Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • In the area of hotel and tourism sector, various research are analyzed using big data. Big data is being generated by any digital devices around us all the times. All the digital process and social media exchange produces the big data. In this paper, we analyzed the de-identification method of big data to use the personal information of hotel guests. Through the analysis of these big data, hotel can provide differentiated and diverse services to hotel guests and can improve the service and support the marketing of hotels. If the hotel wants to use the information of the guest, the private data should be de-identified. There are several de-identification methods of personal information such as pseudonymisation, aggregation, data reduction, data suppression and data masking. Using the comparison of these methods, the pseudonymisation is discriminated to the suitable methods for the analysis of information for the hotel guest. Also, among the pseudonymisation methods, the t-closeness was analyzed to the secure and efficient method for the de-identification of personal information in hotel.

A study on Korean tourism trends using social big data -Focusing on sentiment analysis- (소셜 빅데이터를 활용한 한국관광 트렌드에 관한연구 -감성분석을 중심으로-)

  • Youn-hee Choi;Kyoung-mi Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.97-109
    • /
    • 2024
  • In the field of domestic tourism, tourism trend analysis of tourism consumers, both international tourists and domestic tourists, is essential not only for the Korean tourism market but also for local and governmental tourism policy makers. e will explore the keywords and sentiment analysis on social media to establish a marketing strategy plan and revitalize the domestic tourism industry through communication and information from tourism consumers. This study utilized TEXTOM 6.0 to analyze recent trends in Korean tourism. Data was collected from September 31, 2022, to August 31, 2023, using 'Korean tourism' and 'domestic tourism' as keywords, targeting blogs, cafes, and news provided by Naver, Daum, and Google. Through text mining, 100 key words and TF-IDF were extracted in order of frequency, and then CONCOR analysis and sentiment analysis were conducted. For Korean tourism keywords, words related to tourist destinations, travel companions and behaviors, tourism motivations and experiences, accommodation types, tourist information, and emotional connections ranked high. The results of the CONCOR analysis were categorized into five clusters related to tourist destinations, tourist information, tourist activities/experiences, tourism motivation/content, and inbound related. Finally, the sentiment analysis showed a high level of positive documents and vocabulary. This study analyzes the rapidly changing trends of Korean tourism through text mining on Korean tourism and is expected to provide meaningful data to promote domestic tourism not only for Koreans but also for foreigners visiting Korea.

A study on how to Promote Smart Tourism through Case Analysis of Smart Tourism Utilizing New ICT Technologies (ICT 신기술을 활용한 스마트관광의 추진사례 분석 및 활성화 방안 연구)

  • Jeong, Byeong-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.509-523
    • /
    • 2015
  • With the introduction of smart devices as a new channel of information distribution, the mass tourism that has been dominating the travel scene is being transformed into individual tourism. Therefore, it is more than important to establish an advanced smart tourism environment using cutting-edge ICT technologies in order to go into one of tourism developed countries. In line with that, this study draws both local and international cases to show where smart tourism stands now by mapping out problems and solutions by category. Firstly, in terms of infrastructure, establishing distribution platform and big data analyzing systems were suggested. Secondly, to fit the needs of consumers, converged tourism content and user experience based content development are in need. Lastly, in terms of governance forming public-private consultative body and incubating creative tourism companies are suggested. The study results will serve as a fruitful reference to those who want to establish business strategy related to smart tourism.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Suggested social media big data consulting chatbot service for restaurant start-ups

  • Jong-Hyun Park;Jun-Ho Park;Ki-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2023
  • The food industry has been hit hard since the first outbreak of COVID-19 in 2019. However, as of April 2022, social distancing has been resolved and the restaurant industry has gradually recovered, interest in restaurant start-ups is increasing. Therefore, in this paper, 'restaurant start-up' was cited as a key keyword through social media big data analysis using TexTom, and word frequency and cone analysis were conducted for big data analysis. The keyword collection period was selected from May 1, 2022, when social distancing due to COVID-19 was lifted, to May 23, 2023, and based on this, a plan to develop chatbot services for restaurant start-ups was proposed. This paper was prepared in consideration of what to consider when starting a restaurant and a chatbot service that allows prospective restaurant founders to receive information more conveniently. Based on these analysis results, we expected to contribute to the process of developing chatbots for prospective restaurant founders in the future