• Title/Summary/Keyword: Tourism Big-data

Search Result 149, Processing Time 0.025 seconds

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.

A Sustainable Tourism Study in Underdeveloped Areas Using Big Data Analysis Techniques

  • Hyun-Seok Kim;Sang-Hak Lee;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 2024
  • We Design The problem of underdeveloped areas is emerging as a social problem. Industrialization drove the population to the cities, creating underdeveloped areas. Underdeveloped areas are causing social problems such as population decline and aging. It is necessary to study the continuous tourism development of underdeveloped areas through development and improvement projects. Using social media big data to investigate keywords in underdeveloped areas and see the connection between keywords. The purpose of this study was to conduct core research divided by type and to investigate the keywords of tourism in underdeveloped areas through concor analysis of underdeveloped areas. As a result of the study, keywords were connected for each type of redevelopment, regional development, regional economy, and underdeveloped areas. Through this, the keywords for sustainable tourism in underdeveloped areas were identified. It is hoped that this study will develop sustainable tourism for the keywords of underdeveloped areas.

Research on Changes in the Coffee and Tourism Industries After the End of COVID-19 Through Big Data Analysis

  • Hyeon-Seok Kim;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.43-49
    • /
    • 2024
  • In early 2020, as the COVID-19 pandemic hit the world, widespread changes occurred throughout society. COVID-19 also brought changes in consumers' consumption behaviors and preferences. This study aims to find out how the current status of the tourism industry and the coffee industry has changed since the end of COVID-19 by conducting big data analysis focusing on the search frequency of Naver, Google, and the following, which are representative social networks in Korea. Designating "Coffee Industry + Tourism Industry" as the representative keyword, January 1, 2020 to December 31, 2020, the time of each COVID-19 outbreak, was set before the COVID-19 type, and January 1, 2023 to December 31, 2023 was set after the end of COVID-19. Based on the analyzed search binder big data analysis within the period, we would like to find out how the current status of the tourism industry and the coffee industry has changed since the end of COVID-19. Finaly, the coffee and tourism industries are on the path of recovery and growth. In particular, the rise in coffee consumption, the recovery of the number of tourists, the emphasis on local tourism, and the strengthening of links with global markets are prominent.

A Study on the Change of Tourism Marketing Trends through Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.166-171
    • /
    • 2024
  • Recently, there has been an increasing trend in the role of social media in tourism marketing. We analyze changes in tourism marketing trends using tourism marketing keywords through social media networks. The aim is to understand marketing trends based on the analyzed data and effectively create, maintain, and manage customers, as well as efficiently supply tourism products. Data was collected using web data from platforms such as Naver, Google, and Daum through TexTom. The data collection period was set for one year, from December 1, 2022, to December 1, 2023. The collected data, after undergoing refinement, was analyzed as keyword networks based on frequency analysis results. Network visualization and CONCOR analysis were conducted using the Ucinet program. The top words in frequency were 'tourists,' 'promotion,' 'travel,' and 'research.' Clusters were categorized into four: tourism field, tourism products, marketing, and motivation for visits. Through this, it was confirmed that tourism marketing is being conducted in various tourism sectors such as MICE, medical tourism, and conventions. Utilizing digital marketing via online platforms, tourism products are promoted to tourists, and unique tourism products are developed to increase city branding and tourism demand through integrated tourism content. We identify trends in tourism marketing, providing tourists with a positive image and contributing to the activation of local tourism.

An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data (빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

AR Tourism Recommendation System Based on Character-Based Tourism Preference Using Big Data

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Tae-Won;Kang, Jin-Kyu;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The development of the fourth industry has enabled users to quickly share a lot of data online. We can analyze big data on information about tourist attractions and users' experiences and opinions using artificial intelligence. It can also analyze the association between characteristics of users and types of tourism. This paper analyzes individual characteristics, recommends customized tourist sites and proposes a system to provide the sacred texts of recommended tourist sites as AR services. The system uses machine learning to analyze the relationship between personality type and tourism type preference. Based on this, it recommends tourist attractions according to the gender and personality types of users. When the user finishes selecting a tourist destination from the recommendation list, it visualizes the information of the selected tourist destination with AR.

Study on Promotion of ESG Tourism in Bhutan through Big Data Analysis - Focusing on comparison with ESG Tourism status in Korea-

  • Min Kyeong Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.39-48
    • /
    • 2023
  • The purpose of this study is to revitalize ESG tourism in Bhutan by comparing and analyzing the ESG tourism status in Bhutan and the ESG tourism status in Korea. Big data analysis using text mining was performed by selecting "Bhutan ESG Tourism" and "Korea ESG Tourism" as keywords. The top 30 keywords were extracted through word purification, and based on this, data visualization was conducted through network analysis and Concor analysis between each keyword. As a result of the analysis, it was confirmed that Bhutan, unlike Korea, did not utilize it even though it had elements to incorporate ESG and the tourism industry into the country itself. As a result, since it is necessary to combine ESG elements owned by Bhutan and combine them with the tourism industry, we would like to suggest the direction of combining ESG and the tourism industry through this study.

Study of the Activation Plan for Rural Tourism of the Jeollabuk-do Using Big Data Analysis (빅데이터 분석을 통한 농촌관광 실태와 활성화 방안 연구: 전라북도를 중심으로)

  • Park, Ro Un;Lee, Ki Hoon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.spc
    • /
    • pp.665-679
    • /
    • 2016
  • This study examined the main factors for activating rural tourism of Jeollabuk-do using big data analysis. The tourism big data was gathered from public open data sources and social network services (SNS), and the analysis tools, 'Opinion Mining', 'Text Mining', and 'Social Network Analysis(SNA)' were used. The opinion mining and text mining analysis identified the key local contents of the 14 areas of Jeollabuk-do and the evaluations of customers on rural tourism. Social network analysis detected the relationships between their contents and determined the importance of the contents. The results of this research showed that each location in Jeollabuk-do had their specific contents attracting visitors and the number of contents affected the scale of tourists. In addition, the number of visitors might be large when their tourism contents were strongly correlated with the other contents. Hence, strong connections among their contents are a point to activate rural tourism. Social network analysis divided the contents into several clusters and derived the eigenvector centralities of the content nodes implying the importance of them in the network. Tourism was active when the nodes at high value of the eigenvector centrality were distributed evenly in every cluster; however the results were contrary when the nodes were located in a few clusters. This study suggests an action plan to extend rural tourism that develop valuable contents and connect the content clusters properly.

Analysis of Case Study for Using Tourist Congestion: Jeju Tourism Organization's Real-Time Congestion Level Analysis System (제주관광공사의 실시간 관광지 혼잡도 분석 서비스 사례)

  • Kim, Minji;Koh, Sun-Young;Chung, Namho
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.29-41
    • /
    • 2021
  • The spread of COVID-19 has been changed the tourism industry. Travelers changed their traveling style and started to consider congestion of the spot for their health and safety. In Jeju, a famous tourist destination in South Korea, managing the congestion of tourists has become an important issue. This example introduces the Jeju Tourism Organization's development of a system as a smart tourism information service that manages congestion in real-time big data. Combining with congestion theory and behavior immune system, we would like to assure the necessity of the system. Also, by analyzing the system, we understand how deducing congestion information from big data and the new paradigm of the tourism industry combined with congestion theory. Data was collected by Korea's telecommunication company SKT to develop the system. The paper explains the reason for choosing the company and the pros of data quality. We expect this system to be a solution for any other city in the world under a similar situation. Finally, several suggestions for the system are included to promote and better future usage.

A Study of Comparison between Cruise Tours in China and U.S.A through Big Data Analytics

  • Shuting, Tao;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • The purpose of this study was to compare the cruise tours between China and U.S.A. through the semantic network analysis of big data by collecting online data with SCTM (Smart crawling & Text mining), a data collecting and processing program. The data analysis period was from January $1^{st}$, 2015 to August $15^{th}$, 2017, meanwhile, "cruise tour, china", "cruise tour, usa" were conducted to be as keywords to collet related data and packaged Netdraw along with UCINET 6.0 were utilized for data analysis. Currently, Chinese cruisers concern on the cruising destinations while American cruisers pay more attention on the onboard experience and cruising expenditure. After performing CONCOR (convergence of iterated correlation) analysis, for Chinese cruise tour, there were three clusters created with domestic destinations, international destinations and hospitality tourism. As for American cruise tour, four groups have been segmented with cruise expenditure, onboard experience, cruise brand and destinations. Since the cruise tourism of America was greatly developed, this study also was supposed to provide significant and social network-oriented suggestions for Chinese cruise tourism.