• 제목/요약/키워드: Toughness Index

검색결과 53건 처리시간 0.029초

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber)

  • 전형순
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

목재섬유와 면섬유의 혼합에 따른 수초지의 파괴인성 변화 (Changes of Handsheet Fracture Toughness by Wood and Cotton Fibers Mixing)

  • 김정중;장동욱;윤상구;신현식;박종문
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.81-87
    • /
    • 2014
  • Conditions of paper manufacturing process should be changed depending on the end use and paper properties. Most of the case, mixed pulps with long softwood fibers and short hardwood fibers are used to achieve proper qualities of product with reasonable production cost. For specialty paper manufacture the wood pulp and cotton linter pulp are usually mixed together. The objectives of this study is to analyze physical, mechanical and fracture mechanical properties of paper depending on SwBKP, HwBKP and cotton linter pulp(CLP) mixing. When the mixing ratio of SwBKP was increased, strength properties, such as tensile, tear, and folding endurance, were also increased. When the mixing ratio of SwBKP and HwBKP was increased, stress concentration index was decreased and fracture toughness was increased.

Compressive and Flexural Properties of Hemp Fiber Reinforced Concrete

  • Li, Zhijian;Wang, Lijing;Wang, Xungai
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.187-197
    • /
    • 2004
  • The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

Flow and Engineering Properties of Fiber Reinforced Hwangtoh Mortars

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Hwang, Hye-Zoo
    • 한국건축시공학회지
    • /
    • 제12권3호
    • /
    • pp.332-339
    • /
    • 2012
  • In this study, six mortar mixes were tested in order to examine the significance and limitations of hydrophilic fiber in terms of its capacity to enhance the tensile resistance of Hwangtoh mortar. Lyocell, polyamide and polyvinyl alcohol (PVA) fibers were selected for the main test parameters. The tensile capacity of mortars tested was evaluated based on the splitting tensile strength and the modulus of fracture, while their ductility was examined using the toughness indices specified in ASTM. Test results showed that the addition of lyocell and PVA fibers had little influence on the flow of the Hwangtoh mortars. To enhance the tensile capacity and toughness index of Hwangtoh mortar, it is proposed that fiber spacing above 0.0003 is required, regardless of the type of fiber.

비정질 강섬유보강콘크리트의 휨성능 특성 (Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete)

  • 구동오;김선두;김희승;최경규
    • 콘크리트학회논문집
    • /
    • 제26권4호
    • /
    • pp.483-489
    • /
    • 2014
  • 이 연구에서는 ASTM C 1609을 따라서 비정질 강섬유보강콘크리트의 휨실험을 수행하였고, 이를 바탕으로 휨성능을 평가하였다. 비정질 강섬유는 기존의 일반 강섬유와 달리 얇은 두께, 거친 표면의 특성을 가지고 있다. 주요한 실험변수는 섬유 종류(비정질 강섬유, 일반 강섬유), 섬유 혼입률(0.25, 0.50, 0.75%) 그리고 콘크리트 압축강도(27, 50 MPa)이다. 실험 결과에 근거하여 비정질 강섬유와 일반 강섬유보강콘크리트의 휨강도와 휨인성을 분석하였고, 그 결과 일반 강섬유보강콘크리트의 경우 주로 휨인성이 증가하였으나 비정질 강섬유보강콘크리트의 경우 휨강도와 인성을 모두 증가하는 것으로 나타났다.

차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발 (High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant)

  • 김민철;박상규;이기형;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향 (Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test)

  • 정해식;미원우삼;전석원
    • 터널과지하공간
    • /
    • 제14권5호
    • /
    • pp.363-372
    • /
    • 2004
  • 구마모토 안산암을 대상으로 이중 비틀림(DT) 시험을 통해 유도 홈의 단면 형상이 암석의 응력부식지수에 미치는 영향에 대하여 조사하였다. 정변위속도법에서 변위속도가 증가할수록 균열성장속도는 증가하지만 파괴인성계수는 평균 2.07 MN/m$^{3}$2/로 거의 일정하였다. 정변위법을 통하여 유도 홈의 형상이 사각형, 원형, 삼각형인 시험편을 이용하여 얻은 응력부식지수는 각각 평균 37, 36, 38로 홈의 형상에 관계없이 거의 일정한 값을 보이지만 표준편차는 삼각형 홈에서 가장 크게 나타났다. 암석의 DT시험은 중앙부에 유도 홈이 있는 시험편을 이용하는 것이 효과적이지만 광물의 평균입경 이상의 폭을 가진 사각형 단면의 홈을 이용하는 것이 가장 적절하다.

도체등급별 한우육의 연도와 단백질특성에 대한 비교연구 (Comparative studies on Tenderness and Characteristics of Protein Obtained from Various Carcass grade in Korean native Cow)

  • 문윤희;강세주
    • 생명과학회지
    • /
    • 제7권4호
    • /
    • pp.336-341
    • /
    • 1997
  • This study was conducted to investigate the effects of carcass grade on the hardness, myofibrillar fragmentations index, protein extractability and Mg-ATPase activity of myofibril and actomyosin obtained from 1, 2, 3 and D carcass grade)subgrade) in Korean native cow. Proximate component, hardness, chewiness, myofibril fragmentation index, protein extractability and Mg-ATPase activity if myofibril or actomyosin were not significantly different between 1st and 2nd carcass grade loin. The hardness and chewiness of 2nd carcass grade loin's were significantly lower than 3th grade loin's, but the myofibril fragmentation index, sarcoplasmic protein extractability and Mg-ATPase activity of myofibril were higher. The myofibrillar protein extractability and Mg-ATPase activity of actomyosin obtained from 3th carcase grade loin's were significantly higher than D grade loin's, but the hardness, chewiness and stroma protein extractability were lower. In conclusion, the degree of toughness in Korean native cow's loin was not significantly different between 1st and 2nd grade, but 3rd and D carcass grade were significantly higher, regardless of before and after aging.

  • PDF

유기계 섬유로 하이브리드 보강된 콘크리트의 휨 거동 및 염분침투저항성 (Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete)

  • 김승현;강민범;이동욱
    • 한국지반신소재학회논문집
    • /
    • 제14권4호
    • /
    • pp.105-115
    • /
    • 2015
  • 본 연구에서는 매크로섬유를 PP섬유로 대체하여 유기계 섬유들인 PVA섬유 6mm와 PP섬유 50mm로 하이브리드 보강된 콘크리트의 역학적 특성을 파악하기 위해 섬유의 체적비를 주요변수로 하이브리드 섬유 보강 콘크리트(HFRC) 4배합과 섬유가 없는 Plain콘크리트 1배합을 실험하여 비교하였다. 섬유의 체적비를 1%미만으로 제한하였다. 연구결과 유기계 섬유의 하이브리드 보강은 콘크리트의 강성 및 연성거동을 강섬유만큼 극대화시키지는 못하지만, Plain콘크리트와 비교시 매우 진전된 연성거동을 보이며 휨 인성지수와 등가휨강도 사이의 의미 있는 관계를 확인하였다. 그리고 유기계 섬유로 하이브리드 보강한 콘크리트에서도 섬유의 체적비가 증가할수록 연성이 증가하였고 섬유의 하이브리드를 위해 사용한 마이크로섬유인 PVA섬유보다 매크로섬유인 PP섬유가 콘크리트의 휨 거동에 미치는 영향이 크며, 염분침투시험에서도 섬유의 혼입이 염분침투를 억제하는 효과가 있는 것으로 확인되었다.