• Title/Summary/Keyword: Touch-screen

Search Result 366, Processing Time 0.031 seconds

Usability Evaluation of Touch Keyboard in Smart Watch Environment

  • Oh, Euitaek;Choi, Jinhae;Cho, Minhaeng;Hong, Jiyoung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.569-580
    • /
    • 2016
  • Objective: This study aims to identify the most effective keyboard layout in the area of performance for securing usability in a smart watch-using environment and to verify the usability of touch keyboard calibrated by hand. Background: It is necessary to understand the environmental characteristics in using the smart watch and to secure the usability of touch keyboard based on this understanding in order to take account of the users who use the touch screen in the extreme input conditions caused by the small screen of a smart watch. Method: 30 participants in this study were required to input characters using the QWERTY keyboard and 3x4 keypad (Naratgul, Chunjiin), which were familiar with them, in order to grasp the keyboard layout suitable in the smart watch- using environment; the performance (error rate, performance time) of this case was measured. In addition, 30 participants in this study were required to input the characters setting the QWERTY keyboard with calibrated touch area and the one with uncalibrated touch area, based on the characteristics of touch behavior, by finger typing the keyboard, with the performance (error rate and performance time) of this case measured. Results: QWERTY keyboard (93.3sec) is found to be 31.2% faster than Naratgul keyboard, a kind of 3x4 keypad, and 43.6% faster than Chunjiin keyboard, in the area of efficiency, in the results of the usability evaluation regarding the keyboard layout. QWERTY keyboard with calibrated touch area (7.5%) is found to be 23.5% improved compared to the QWERTY keyboard with uncalibrated touch area (9.8%) in the area of accuracy (error rate). The results of the usability evaluation regarding the QWERTY keyboard with touch area calibrated by finger typing the keyboard and QWERTY keyboard with calibrated touch area (80.7sec) is found to be 5.7% improved compared to QWERTY keyboard with uncalibrated touch area (85.6sec) in the area of efficiency (performance time). Conclusion: QWERTY keyboard is found to have an effective layout in the area of efficiency in the smart watch-using environment, and its improved usability is verified in the areas of accuracy and efficiency in the QWERTY keyboard with a touch area calibrated by finger typing the keyboard. Application: The results of this study may be used to set up the basic touch keyboard of the smart watch. The input usability is expected to secure the smart watch-using environment, which is an extreme input condition by applying QWERTY keyboard with touch area calibrated by finger typing the keyboard.

Layered Pattern Authentication Scheme on Smartphone Resistant to Social Engineering Attacks (사회공학적 공격에 강인한 스마트폰 계층화 패턴 인증 기법)

  • Tak, Dongkil;Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • In this paper, we propose a layered pattern authentication scheme resistant to social engineering attacks. Existing android pattern lock scheme has some weak points for social engineering attacks. Thus, the proposed scheme improves the existing pattern lock scheme. In our scheme, pattern is recorded by touch screen, however, it is different with existing schemes because of the layered pattern. During the pattern registration process, users register their own pattern with many layers. Thus, registered pattern is 3D shape. When the smudge attack is occurring, the attacker can see the shape of user pattern through the smudge on smartphone screen. However, it is described on 2D surface, so acquired pattern is not fully determine to users original 3D shape. Therefore, our scheme is resistant to social engineering attack, especially smudge attack.

A New Eye Tracking Method as a Smartphone Interface

  • Lee, Eui Chul;Park, Min Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.834-848
    • /
    • 2013
  • To effectively use these functions many kinds of human-phone interface are used such as touch, voice, and gesture. However, the most important touch interface cannot be used in case of hand disabled person or busy both hands. Although eye tracking is a superb human-computer interface method, it has not been applied to smartphones because of the small screen size, the frequently changing geometric position between the user's face and phone screen, and the low resolution of the frontal cameras. In this paper, a new eye tracking method is proposed to act as a smartphone user interface. To maximize eye image resolution, a zoom lens and three infrared LEDs are adopted. Our proposed method has following novelties. Firstly, appropriate camera specification and image resolution are analyzed in order to smartphone based gaze tracking method. Secondly, facial movement is allowable in case of one eye region is included in image. Thirdly, the proposed method can be operated in case of both landscape and portrait screen modes. Fourthly, only two LED reflective positions are used in order to calculate gaze position on the basis of 2D geometric relation between reflective rectangle and screen. Fifthly, a prototype mock-up design module is made in order to confirm feasibility for applying to actual smart-phone. Experimental results showed that the gaze estimation error was about 31 pixels at a screen resolution of $480{\times}800$ and the average hit ratio of a $5{\times}4$ icon grid was 94.6%.

The Application of a Quantitative Performance Assessment Model in Accordance with Button Menu Form Changes in Touch Screen Input Methods (터치스크린 입력방식에서 버튼메뉴의 형상변화에 따른 정량적 수행평가 모델 적용)

  • Han, Sang-Bok;Pyo, Jung-Sun
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.337-348
    • /
    • 2015
  • Touch input method is unintended difficulties regarding touch and input have increased with touch input methods when compared to using a mouse for input in previously existing menus. This study attempted to analyze usability evaluations according to form and size changes of minimal button forms in button menus. This attempted to verify possibilities through more effective applications of the quantitative performance prediction evaluation model through comparative analysis of Fitts' Law, the representative model of the regression model formula and the interface human performance evaluation method, so that applications can be made in interface designs of touch input methods. Therefore it was significant in that it made reflections on design with consideration given to use user times according to button forms and size changes that can be applied to touch screens.

Performance Comparison of the Recognition Methods of a Touched Area on a Touch-Screen Panel for Embedded Systems (임베디드 시스템을 위한 터치스크린 패널의 터치 영역 인식 기법의 성능 비교)

  • Oh, Sam-Kweon;Park, Geun-Duk;Kim, Byoung-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2334-2339
    • /
    • 2009
  • In case of an embedded system having an LCD panel with touch-screen capability, various figures such as rectangles, pentagons, circles, and arrows are frequently used for the delivery of user-input commands. In such a case, it is necessary to have an algorithm that can recognize whether a touched location is within a figure on which a specific user-input command is assigned. Such algorithms, however, impose a considerable amount of overhead for embedded systems with restricted amount of computing resources. This paper first describes a method for initializing and driving a touch-screen LCD and a coordinate-calibration method that converts touch-screen coordinates into LCD panel coordinates. Then it introduces methods that can be used for recognizing touched areas of rectangles, many-sided figures like pentagons, and circles; they are a range checking method for rectangles, a crossing number checking method for many-sided figures, a distance measurement method for circles, and a color comparison method that can be applied to all figures. In order to evaluate the performance of these methods, we implement two-dimensional graphics functions for drawing figures like triangles, rectangles, circles, and images. Then, we draw such figures and measures times spent for the touched-area recognition of these figures. Measurements show that the range checking is the most suitable method for rectangles, the distance measurement for circles, and the color comparison for many-sided figures and images.

User Experience of touch based mobile phones

  • Kim, Seung-Chan;Lee, Kwang-Yeol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.298-298
    • /
    • 2009
  • Touch screen using in portable devices is expanding continuously, has become particularly strong in mobile phones. These trends are able to open the "New Horizon" which refers the design and usability of mobile phones and provide "New Experience" which users have never been experienced on mobile phones. This research argues new usability issues and important points which can be occurred in touch based mobile phones as user experience point of view.

  • PDF

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Touch-Pen Noise Reduction Using B-Spline Function (B-Spline 곡선을 이용한 터치펜 잡음제거)

  • Lee, Sang-Bum
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.121-126
    • /
    • 2017
  • Recently, a lot of people use touch-pen devices such as smart phones and tab computers. To generate the picture and text, a user can give input or control the touch-pen device through simple or multi-touch gestures by touching the screen with a special stylus pen and/or one or more fingers. The accuracy and response time from the moment of contact with the touch board is very important to the touch device. Therefore, research is needed to find a way of removing the noise included in the touch signal quickly and efficiently. In this paper, we propose a method for removing a noise mixed in with a touch point coordinate which has been caused by a input pen on the touch screen. For effective filtering, the fast sampling of the coordinate corresponding to the noise from the input signal is required primarily. Secondly the total compensation of the touch coordinates using the characteristics of the B-Spline curve is applied to correct coordinates of the points. This method can ensure a real-time response than other algorithms. The applied performance evaluation method is comparing error pixels with evaluation values by dividing 10 intervals on the touch pad diagonally. Usually the average error is 7.1 pixels but our proposed method shows an average 4.1 errors. Therefore, our proposed touch pen method can express the input signal on the coordinates more correctly.

The Proposal of the Conceptual Model for Cognitive Action of Smart Device (스마트 디바이스의 인지적 행동에 대한 개념모델 제안)

  • Song, Seung-Keun;Kim, Tae-Wan;Kim, Chee-Yong
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.529-536
    • /
    • 2010
  • Currently many people are awfully concerned about smart device in domestic and foreign mobile market. The need of smart device has been rapidly increased. Unlike a feature phone smart devices provide us with an intuitive interface which is easy to control. They are enable to smoothly interact between user and device. Though higher market outlook, there is a lack of empirical research on user interface in touch screen based on smart device. In this paper, we propose the touch interface conceptual model concentrating on user based on the result of previous research. Materials of this research are three kinds of smart devices which are currently released. Through expert's depth interview and observation of user, user's cognitive actions in smart device are defined. Since the method of the touch interface which is suitable for the action has been derived, we have proposed the conceptual model of user's cognitive action. This research imply to offer the excellent design guideline in order to implement touch interface to optimize user experience in touch screen based on smart device to release in the future.