• Title/Summary/Keyword: Touch feedback

Search Result 57, Processing Time 0.01 seconds

Effect of Tactile Feedback for Button GUI on Mobile Touch Devices

  • Shin, Heesook;Lim, Jeong-Mook;Lee, Jong-Uk;Lee, Geehyuk;Kyung, Ki-Uk
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.979-987
    • /
    • 2014
  • This paper describes new tactile feedback patterns and the effect of their input performance for a button GUI activated by a tap gesture on mobile touch devices. Based on an analysis of touch interaction and informal user tests, several tactile feedback patterns were designed. Using these patterns, three user experiments were performed to investigate appropriate tactile feedback patterns and their input performance during interaction with a touch button. The results showed that a tactile pattern responding to each touch and release gesture with a rapid response time and short falling time provides the feeling of physically clicking a button. The suggested tactile feedback pattern has a significantly positive effect on the number of typing errors and typing task completion time compared to the performance when no feedback is provided.

A Study for Sound and Tactile Feedback on Touch Screen Phone Under Mobility Conditions (터치스크린 휴대폰 사용 환경을 고려한 소리, 진동 피드백 연구)

  • Kim, Young-Il;Kim, Se-Mi;Min, Young-Sam
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.130-134
    • /
    • 2008
  • Touch screen phone which is expected to play a big part of the mobile market for the next few years, has many merits but demerits of inaccurate feedback. It offers audio and tactile feedback to strengthen the weak point. This study aims to see if audio feedback and vibration feedback react upon each other under realistic conditions. We had a qualitative research in perception after using touch screen phone feedback. The result showed that with any feedback users were satisfied more than without any feedback and there was diversity in response. We ran the study again to see the performance level and the projective workload between the kind of feedback and interrupting feedback environment Performance rates were faster with audio feedback and according to the projective workload assessment users felt that task was easier and less annoying with audio-vibration feedback. The results suggest that audio feedback could be more effective than vibration feedback. A future study will figure out the relationship between the factors of qualitative-controlled feedback and learning time and the performance, and the main cause to make people prefer one feedback over another in a realistic world.

  • PDF

Effect of Step Height and Visual Feedback on the Lower Limb Kinematics Before and After Landing

  • Jangwhon Yoon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: Landing from a step or stairs is a basic motor skill but high incidence of lateral ankle sprain has been reported during landing with inverted foot. Objects: This study aimed to investigate the effect of landing height and visual feedback on the kinematics of landing and supporting lower limbs before and after the touch down and the ground reaction force(GRF)s. Methods: Eighteen healthy females were voluntarily participated in landing from the lower (20 cm) and the higher (40 cm) steps with and without visual feedback. To minimize the time to plan the movement, the landing side was randomly announced as a starting signal. Effects of the step height, the visual feedback, or the interaction on the landing duration, the kinematic variables and the GRFs at each landing event point were analyzed. Results: With eyes blindfolded, the knee flexion and ankle dorsiflexion on landing side significantly decreased before and after the touch down. However, there was no significant effect of landing height on the anticipatory kinematics on the landing side. After the touch down, the landings from the higher step increased the knee flexion and ankle dorsiflexion on both landing and supporting sides. From the higher steps, the vertical GRF, anterior GRF, and lateral GRF increased. No interaction between step height and visual feedback was significant. Conclusion: Step height and visual feedback affected the landing limb kinematics independently. Visual feedback affected on the landing side while step height altered the supporting side prior to the touch down. After the touch down, the step height had greater influence on the lower limb kinematics and the GRFs than the visual feedback. Findings of this study can contribute to understanding of the injury mechanisms and preventing the lateral ankle sprain.

FPGA-based Hardware Prediction Rendering for Low-Latency Touch Platform

  • Song, Seok Bin;Kim, Jin Heon
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.59-62
    • /
    • 2018
  • The delay between input action and visual interface feedback ("Latency") in a touchscreen inking task reduces the user's performance. When the latency is less than 2.38ms, the user cannot perceive the latency in dragging task. This value is difficult to achieve on recent touchscreens and general purpose computers. So, methods of predicting touch points to reduce perceptible latency has been proposed. In general, touch points prediction is not perfect. When using point prediction, feedback of the predicted points is displayed on the screen, after a while, erased when the actual points are displayed. When this task is implemented by software, it causes additional latency to work to erase predicted points feedback. It therefore propose a platform for rendering point prediction feedback without additional latency by the FPGA. This platform transmits input points and HDMI signals rendering feedback of input points to the FPGA. The FPGA draws the feedback of points predicted based on the input points on the HDMI and displays the screen. Since hardware rendering changes the HDMI signal every frame, it does not require erasing work and rendering can be done within an early time regardless of the amount of rendering, so we will reduce the latency.

Manipulation of the Windows Interface Based on Haptic Feedback (촉각 기반 윈도우 인터페이스)

  • Lee, Jun-Young;Kyung, Ki-Uk;Park, Jun-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.366-371
    • /
    • 2008
  • In this paper, we suggest a haptic interface and a framework of interaction with haptic feedback based Windows graphical user interface (GUI) in a computing device with touch screen. The events that occur during a user interacts with Windows interfaces through a touch screen are filtered out by the Windows Interface Message Filter (WIMF) and converted into appropriate haptic feedback information by the Haptic Information Provider (HIP). The haptic information are conveyed to users through a stylus-like haptic interface interacting with a touch screen. Major Windows interaction schemes including button click, menu selection/pop-up, window selection/movement, icon selection/drag & drop and scroll have been implemented and user tests show the improved usability since the haptic feedback helps intuition and precise manipulation.

  • PDF

Study on Behavioral Characteristics of 3D Touch in Smartphone

  • Oh, Euitaek;Hong, Jiyoung;Cho, Minhaeng;Choi, Jinhae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.551-568
    • /
    • 2016
  • Objective: The objective of this study is to identify the difference in the press behavior characteristics of 3D Touch, which is a new touch interaction of smart phones, and the existing 'Tap and Long Press' touch interaction, and to examine behavior changes upon feedbacks. Background: Since 3D Touch is similar to the existing 'Tap and Long Press' touch interactions in terms of press behavior, which is likely to cause interference, it is necessary to conduct a preliminary study on behavior characteristics of touch interactions. Method: In utilization of smart phones with the 3D Touch function to measure press behavior characteristics of touch interaction, an experiment was conducted where 30 subjects were given a task to press 30 buttons of touch interactions on the screen. During the experiment, two press behavior characteristics-maximum touch pressure and press duration-were analyzed. To grasp changes in behaviors upon feedbacks, the task was carried out in a condition where there was no feedback and in a condition where there were feedbacks of specific critical values. Results: While there was no feedback given, subjects tended to press with much strength (318.98gf, 0.60sec) in the case of 3D Touch, and press the Long Press button for a while (157.12gf, 1.10sec) and press the Tap button with little strength only for a short moment (37.92gf, 0.10sec). 3D Touch and Long Press had an area of intersection in time, but when feedbacks of specific critical values were given, there were behavior calibration effects to adjust the press behavior characteristics of 3D Touch and Long Press. Conclusion: Although interferences are expected between 3D Touch and Long Press due to the similarity of press behaviors, feedbacks induce behavior calibration. Hence, once feedbacks were provided with 3D Touch operated in an appropriate condition of critical pressure, interference between two motions can be minimized. Application: The findings of this study are expected to be utilized as a basis for the values of optimal critical pressure, at which users can easily distinguish 3D Touch from Long Press which is the existing touch interaction.

A Study on User Behavior of Input Method for Touch Screen Mobile Phone (터치스크린 휴대폰 입력 방식에 따른 사용자 행태에 관한 연구)

  • Jun, Hye-Sun;Choi, Woo-Sik;Pan, Young-Hwan
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.173-178
    • /
    • 2008
  • Due to a rapid increase in demand for bigger-screen-equipped mobile phones in recent years, many big-name-manufactures have been releasing touch-screen-enabled devices. In this paper, various touch-screen-input methods have been summarized into 6 different categories. How? By tracing each user's finger print path, user's input pattern and behavior have been carefully recorded and analyzed. Through this analysis, what to be considered before designing UI is presented in great details.

  • PDF

Design of Ball-based Mobile Haptic Interface (볼 기반의 모바일 햅틱 인터페이스 디자인)

  • Choi, Min-Woo;Kim, Joung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.122-128
    • /
    • 2009
  • In this paper, we present a design and an evaluation of a hand-held ball based haptic interface, named "TouchBall." Using a trackball mechanism, the device provides flexibility in terms of directional degrees of freedom. It also has an advantage of a direct transfer of force feedback through frictional touch (with high sensitivity), thus requiring only relatively small amount of inertia. This leads to a compact hand-held design appropriate for mobile and 3D interactive applications. The device is evaluated for the detection thresholds for directions of the force feedback and the perceived amount of directional force. The refined directionality information should combine with other modalities with less sensory conflict, enriching the user experience for a given application.

  • PDF

Study of Human Tactile Sensing Characteristics Using Tactile Display System (질감 제시 장치를 이용한 촉감인지 특성 연구)

  • Son Seung-Woo;Kyung Ki-Uk;Yang Gi-Hun;Kwon Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.