• Title/Summary/Keyword: Touch Screen Panel

Search Result 73, Processing Time 0.024 seconds

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor using Modified Charge Pump Circuit (Charge pump 기반 정전 센싱 회로를 이용한 터치스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo;Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.875-877
    • /
    • 2011
  • This paper introduces a touch screen panel driver using modified charge pump circuit. The touch screen panel driver is composed of an analog circuit part which senses a touch and a digital circuit which analyse the sensed signal. To verify the functions the touch screen panel driver, a mixed-mode circuit was built and simulated using Cadence Spectre. The digital circuits were modeled with Verilog-A in order to interface with the analog circuits and verify the functionalities of the driver with less simulation time. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver which does not include an ADC.

  • PDF

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

Touch Position Recovery Algorithm for Differential Sensing Touch Screen

  • Kim, Ji-Ho;Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.106-114
    • /
    • 2016
  • Differential sensing methods are more effective in alleviating panel noise than single-line sensing, and thus have been increasingly used in the touch screen industry. However, they have a drawback: they tend to cancel out multiple touches and need touch position recovery algorithms. This paper introduces a novel algorithm of touch position recovery for differential sensing, which is a low-complexity but high-accuracy approach for determining multiple touch positions. We have implemented the proposed method in a touch screen controller system on a chip. In the simulation experiments using realistic touch screen models and a differential sensing circuit, the algorithm exhibited a high detection performance of a signal-to-noise ratio gain of up to 52.21 dB. Therefore, we can conclude that the proposed method is substantially more accurate than the previous method. Further, the proposed method incurs little or no overhead in terms of the detection speed and the chip size.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

A Study on Properties of UV-Curing Silver Paste for Touch Panel by Photoinitiator Characteristic (광개시제 특성에 따른 터치 패널용 UV 경화형 Ag 페이스트의 물성 연구)

  • Nam, Su-Yong;Koo, Yong-Hwan;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2011
  • The recent spotlight on electronic touch-screen display, a rapid breakthrough in the information society is evolving. Touch panel input device such as a keyboard or mouse without the use of, the on-screen character or a specific location or object on the person's hand touches a particular feature to identify the location of a panel is to be handled. The touch screen on the touch panel is used in the Ag paste is used mostly for low-curable paste. The thermal-curing paste according to the drying process of thermal energy consumption and improve the working environment of organic solvents have problems. In this study, Ag paste used in the non-thermal curing friendly and cost-effective UV curable paste was prepared. Current commercially available thermal-curable binder, was used instead of the flow characteristics of UV-curable oligomers and monomers with functional groups to give a single conductive Ag paste with the addition of a pattern could be formed. Ag paste as a result, thermal-curing adhesive, hardness, resistance and excellent reproduction of fine patterns and was available with screen printing environmentally friendly could see its potential as a patterning technology.

An Internal Touch Screen Panel Using Standard a-Si:H TFT LCD process

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Ki-Chan;Han, Sang-Youn;Koh, Jai-Hyun;Takahashi, Seiki;Berkeley, Brian H.;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.250-253
    • /
    • 2008
  • A touch screen panel embedded 12.1-inch TFT LCD employing a standard a-Si:H TFT process has been successfully developed. Compared with conventional external touch screen panels, the new internal TSP exhibits a clearer image and improved touch feeling. Our new internal proposed TSP can be fabricated with low cost.

  • PDF

Circuit Modeling and Analysis of Touch Screen Panel (터치스크린 패널의 회로 모델링 및 분석)

  • Byun, Kisik;Min, Byung-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • A simple RC circuit model of large-scale touch screen panels is developed and the frequency range of the RC model is analyzed. 2D EM simulation results of a single touch cell are cascaded for a 23 inch touch panel using a circuit simulator, and the shortest and longest channels of the full panel are modeled with a 5-element RC circuit. The 5-element RC circuit can model the touch screen panel upto 130 kHz with the channel phase error of $10^{\circ}$. 7-element RC circuit model is also proposed and the frequency range for the channel phase error of $10^{\circ}$ is extended to 200 kHz.

An Excessive Current Subtraction Technique to Improve Dynamic Range for Touch Screen Panel Applications

  • Heo, Sanghyun;Ma, Hyunggun;Bien, Franklin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.375-379
    • /
    • 2016
  • A current subtraction technique with parallel operation system is proposed to remove excessive current in touch screen application. The proposed current subtraction remove the current which go into the input node of charge amplifier. The value of subtraction current is same with current when touch screen is not touched. As a result, charge amplifier output is only proportional to variation of mutual capacitor, which make dynamic rage is increased. Also, Transmitter (Tx) driving signal and subtraction driving signal are out of phase each other. Thus, noise generated in Tx is cancelled. The proposed IC is implemented in a mixed-mode 0.18-um CMOS process. Overall system is designed for touch screen panel (TSP) with 16 driving lines and 8 sensing lines. 5-V supply voltages are used in the proposed circuits. For multiple Tx driving signal, Walsh codes are used and signal frequency is 300 khz. By using proposed technique, dynamic rage is improved 36 dB.

Advancements in Capacitive Touch System and Stylus Technologies

  • Ha-Min Lee;Seung-Hoon Ko
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.465-475
    • /
    • 2024
  • Due to changes in the form factor of display panels and touch screen panels in various devices, capacitive touch systems have evolved to address various issues such as low power consumption, noise immunity, and small chip size. Furthermore, some devices have applications that use a stylus. Since the stylus operates similarly to a finger touch, it encounters similar issues. Recent research trends focus on addressing key issues such as noise, which is primarily caused by the self-capacitor formed between the display cathode and the touch screen panel. In this paper, Various research papers discussing methods to eliminate external noise will be reviewed. These advancements enhance noise immunity in touch systems, making it easier to use thinner and more flexible panels. These progress make touch technology more versatile and reliable in various applications.