• 제목/요약/키워드: Total system and Sub system

Search Result 686, Processing Time 0.034 seconds

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

An integrated manufacturing and distribution model for a multi-echelon structure

  • Hwang, Heung-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.222-244
    • /
    • 1990
  • A multi-echelon structure of manufacturing and distribution system in considered, where the raw materials are transformed into a finished good through a number to manufacturing echelons and it is distributed to the lower echelons(retailers, or customers). The raw material, work-in-process, finished good inventory and the distribution costs are unified into one model. The objective is to determine the ordering policy of raw materials, manufacturing lot size, the number of sub-batch and the distribution policy of the finished good which minimize the annual total system cost. A computer program for a heuristic search technique is developed, by which a numerical example is examined.

  • PDF

Modeling and Parameter estimation of Antilock Braking System (최소자승법에 의한 ABS(Antilock Braking System)의 모델링 및 파라미터 평가)

  • Song, Chang-Sub;Rho, Hyoung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.87-92
    • /
    • 2002
  • By using the signal error test, model structure of total antilock braking system consisting of electromagnetic system and hydraulic system is determined as 9th order system. For determining parameters of the ABS, using time discrete model of parametric method, parameters in time discrete model are searched by least square method. By bilinear transform, we have found the model of ABS in s domain. Afterward, experimental output data is compared with simulated output data by MATLAB haying identified parameter. As the result, experimental data is agreed with simulated data very well.

Contribution analysis of a brake system based on virtual unit-excitation (단위 가진을 활용한 브레이크 시스템 기여도 분석)

  • Kim, C.J.;Kwon, S.J.;Kim, W.S.;Lee, B.H.;Kim, H.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.604-605
    • /
    • 2008
  • Modal participation factor (MPF) is a widely used in a mode-coupling squeal noise problem for finding the most sensitive component over a complex brake system in a vehicle using eigenvectors of sub-components. This methodology requires the problematic total response of system by the unstable squeal noise at a specific frequency as well as eigenvectors of each component belonging to brake system. In this paper, a unit-force response analysis is performed for intact total system to obtain eigenvectors of each component and then such data is directly used for the contribution analysis of a squeal noise problem. Since the eigenvectors of each component induced from virtual unit-excitation is most reliable owing to the intact boundary condition, it can be expected that the corresponding contribution analysis with MPF also provides a trustworthy result.

  • PDF

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

Dissipation Effects Induced by Substructures Comprised of Multiple oscillators (다수의 진동체로 구성된 부 구조물에 의한 감쇠 효과)

  • Choi, Sung-Hoon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.445-452
    • /
    • 2002
  • The goal of this paper Is to characterize the vibration damping induced in a main structure by a large number of sub-oscillators. A simple expression is obtained for the substructure impedance when the number of sub-oscillators approaches Infinity. It is found that the induced damping depends on the total mass of the sub-oscillators resonating in a frequency band of interests and nearly independent of their Individual loss factors. A modal overlapping condition. which corresponds to bandwidths that exceed the spacing of those natural frequencies, is required for the sub-oscillators to have such effects. An impulse response of the system is also considered. When the sub-oscillators lack damping and do not satisfy the modal overlapping condition, the vibratory energy is returned from the sub-oscillators to the main structure at later times. The result of this paper is consistent with that found with the fuzzy structure and SEA framework.

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

Economic evaluation of thorium oxide production from monazite using alkaline fusion method

  • Udayakumar, Sanjith;Baharun, Norlia;Rezan, Sheikh Abdul;Ismail, Aznan Fazli;Takip, Khaironie Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2418-2425
    • /
    • 2021
  • Monazite is a phosphate mineral that contains thorium (Th) and rare earth elements. The Th concentration in monazite can be as high as 500 ppm, and it has the potential to be used as fuel in the nuclear power system. Therefore, this study aimed to conduct the techno-economic analysis (TEA) of Th extraction in the form of thorium oxide (ThO2) from monazite. Th can be extracted from monazite through an alkaline fusion method. The TEA of ThO2 production studied parameters, including raw materials, equipment costs, total plant direct and indirect costs, and direct fixed capital cost. These parameters were calculated for the production of 0.5, 1, and 10 ton ThO2 per batch. The TEA study revealed that the highest production cost was ascribed to installed equipment. Furthermore, the highest return on investment (ROI) of 21.92% was achieved for extraction of 1 ton/batch of ThO2, with a payback time of 4.56 years. With further increase in ThO2 production to 10 ton/batch, the ROI was decreased to 5.37%. This is mainly due to a significant increase in the total capital investment with increasing ThO2 production scale. The minimum unit production cost was achieved for 1 ton ThO2/batch equal to 335.79 $/Kg ThO2.

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.