• Title/Summary/Keyword: Total soil carbon

Search Result 372, Processing Time 0.027 seconds

Nitrogen, Phosphorus, and Organic Carbon Discharges in the Imgo Small Agricultural Watershed Catchment (임고천상류 소규모 농업유역에서 하천으로의 질소, 인 및 유기물의 부하)

  • Chung, Jong-Bae;Kim, Min-Kyeong;Kim, Bok-Jin;Park, Woo-Churl
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • Since high concentrations of N, P, and organic C cause the excessive eutrophication in water systems, the control of nutrient export from agricultural nonpoint sources has become important. This study was conducted to estimate discharges of N, P, and organic C from a small agricultural watershed of the upper Imgo stream in Youngchun, Kyongbuk. Of the total area(1.420ha), 25% was agricultural land including paddy, upland and orchards and most of the remainder was forest. The resident population in the watershed was 194 in 80 households and relatively small numbers of livestocks including cow were raised. Mean concentrations of nutrients in the stream water were 4.95, 0.80, 6.72, 0.07 and 2.52mg/L for $NO_3-N$, $NH_4-N$, Total N, Total P and COD respectively. Annual discharges in 1997 were 28,991kg of $NO_3-N$. 3,010kg of $NH_4-N$, 37,006kg of Total N. 590kg of Total P, and 29,138kg of COD. There was a strong positive relationship between stream flow and precipitation, and also most of the nutrient discharges occurred in the rainy season (May to August). Since there was no any other industries in the watershed, agricultural practices and sewage from the resident households, forest runoff and livestock wastes were the major sources of NPS discharges. A combination of management options, including management of soil erosion and fertilizer application, could lead to reductions in nutrient exports.

  • PDF

Nutrient Characteristics of Biomass, Forest Floor, and Soil between Plantation and Expansion Sites of Phyllostachys nigra var. henonis (솜대 조림지와 확산지의 바이오매스, 임상, 토양의 양분 특성)

  • Kwak, You Sig;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Bae, Eun Ji;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, the relationships between bamboo expansion and the nutrient characteristics of bamboo biomass, the forest floor, and mineral soil (at 30-cm depth) were determined in unfertilized expansion sites and fertilized plantations of Phyllostachys nigra var. henonis in Jinju, Gyeongsangnam-do. Nitrogen and phosphorus concentrations in bamboo components (culm, branches, and foliage) were significantly higher in the plantation site than those in the expansion site (P < 0.05). However, the nutrient concentration of the forest floor did not differ significantly between the plantation and expansion sites. Mean organic carbon concentration at 0-30-cm soil depth was significantly higher in the plantation site (30.80 g kg-1) than that in the expansion site (15.64 g kg-1). In addition, total nitrogen, phosphorus, and exchangeable K+ at 0-30-cm soil depth were significantly higher in the plantation site than those in the expansion site. These results indicate that bamboo can spread to areas with low-nutrient concentrations in adjacent forests.

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Environmental Impact Assessment of Agricultural Systems Using the Life Cycle Assessment (전과정평가 도입을 통한 농업환경영향 평가)

  • Shim, Kyo-Moon;Jeong, Ji-Sun;So, Kyu-Ho;Lim, Song-Tak;Roh, Kee-An;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.237-241
    • /
    • 2010
  • Many policies have been implemented to mitigate the greenhouse gases in atmosphere overall of sectors. With considering the distinct characteristics of the food security, agricultural sector is no exception to this situation. To this regard, total amount of carbon which is emitted through all of the agricultural production process is calculated, and being based on this result, the demand for the introduction of agricultural production system with low carbon has been rising. Case studies on the application of life cycle assessment (LCA) technique to agricultural sector are found in many countries. For example, life cycle inventory (LCI) data bases of crop, farm infrastructure, fertilizer, farm machinery, and etc., have been constructed and provided by Ecoinvent (Swiss centre for life cycle inventories) of Swiss. In Japan, Top-down typed LCA methodology for agriculture is developed based on the inter-industry analysis, and is evaluated according to the productive method of crop. On the other hand, environmental impact assessment of agricultural system using LCA in Korea is just in the beginning stages. So it is required to assess environmental impact on agricultural fertilizer and pesticide, and to develop their flow modeling, and methodology of LCA of agricultural sector. Environmental impact assessment on agricultural materials, machinery, and infrastructure will also be carried out.

Source Apportionment and Chemical Characteristics of Atmospheric PM2.5 in an Agricultural Area of Korea (농촌지역 대기 중 PM2.5의 화학적 특성과 오염원 정량 평가)

  • Jeong, Jin-Hee;Lim, Jong-Myoung;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.431-446
    • /
    • 2018
  • In this study, chemical characteristics of $PM_{2.5}$ samples collected in an agricultural area in Nonsan of Korea were investigated focusing on of black carbon, 3 inorganic ions and 22 trace elements. It was found that the relative error and relative standard deviation of many trace elements fell below 10%, which indicates good analytical accuracy and precision. The mean values of $PM_{2.5}$ in an agricultural area were exceeded by new Korean air quality standard of March 2018. The concentration of $PM_{2.5}$ was well correlated with those of black carbon and ions. The concentrations of trace elements were in a wide range of seven orders of a magnitude. Based on these $PM_{2.5}$ data sets, a total of 6 sources were identified using PMF (Positive Matrix Factorization; secondary aerosol (34.4%), soil/road dust (20.1%), biomass burning (16.9%), incineration/fuel combustion (13.2%), vehicle exhaust(12.2%), sea-salt (3.17%). Results of our study indicate that it is very important to control illegal burning activities in agricultural area.

Isolation of a Phenol-degrading Bacterial Strain and Biological Treatment of Wastewater Containing Phenols (Phenol 분해균주의 분리 및 페놀함유 폐수의 생물학적 처리)

  • Lee, Hyun Don;Lee, Myoung Eun;Kim, Hyung Gab;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1273-1279
    • /
    • 2013
  • Aromatic hydrocarbons, such as phenol, have been detected frequently in wastewater, soil, and groundwater because of the extensive use of oil products. Bacterial strains (56 isolates) that degraded phenol were isolated from soil and industrial wastewater contaminated with hydrocarbons. GN13, which showed the best cell growth and phenol degradation, was selected for further analysis. The GN13 isolate was identified as Neisseria sp. based on the results of morphological, physiological, and biochemical taxonomic analyses and designated as Neisseria sp. GN13. The optimum temperature and pH for phenol removal of Neisseria sp. GN13 was $32^{\circ}C$ and 7.0, respectively. The highest cell growth occurred after cultivation for 30 hours in a jar fermentor using optimized medium containing 1,000 mg/l of phenol as the sole carbon source. Phenol was not detected after 27 hours of cultivation. Based on the analysis of catechol dioxygenase, it seemed that catechol was degraded through the meta- and ortho-cleavage pathway. Analysis of the biodegradation of phenol by Neisseria sp. GN13 in artificial wastewater containing phenol showed that the removal rate of phenol was 97% during incubation of 30 hours. The removal rate of total organic carbon (TOC) by Neisseria sp. GN13 and activated sludge was 83% and 78%, respectively. The COD removal rate by Neisseria sp. GN13 from petrochemical wastewater was about 1.3 times higher than that of a control containing only activated sludge.

Effect of Barley Straw Application on Soil Properties, Rice Yield and Plowable Stress with Plowing Methods and Irrigation Rates in Barley- Rice Double Cropping System (이모작 벼 재배시 경운방법 및 관개량에 따른 쌀 수량, 토양특성에 대한 보릿짚 시용효과)

  • Yang, Chang-Hyu;Kim, Byung-Soo;Park, Woo-Kyun;Lee, Deog-Bae;Yoo, Chul-Hyun;Kim, Jae-Duk;Jeong, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.201-207
    • /
    • 2007
  • To reduce both the floatation of the seedling of rice and the failure in standing in the paddy field when the barley straw was applied to paddy field before planting the rice, we tested the effect of rice rooting with plowing methods and irrigation rates for 2 years from 2003 to 2004. This study was carried out in paddy field with Fluvio-Marine deposit in Jeonbug series and the operating accuracy and the change of soil physico-chemical properties depending on plowing methods and irrigation rates following the barley straw applying were examined. There was a less floatation of barley straw in the dry-rotaryI+water-rotaryI(DRI+WRI) plot than in the plowing+water-rotary(PL+WRI) plot. The ratio of miss-planted and floating seedling also decreased by 1.7%, 2.6% in the DRI+WRIplot compared with PL+WRI plot. The soil physical property was improved with the decreasing soil hardness, bulk density and increasing soil porosity after the application of barley straw, especially enhanced greatly in the increase of porosity, gaseous phase and with the decrease of soil hardness, bulk density of subsurface soil in DRI+WRI plot. And the change of soil chemical property were increased the content of total carbon$^{\circ}{\S}$nitrogen$^{\circ}{\S}$organic matter and available phosphate while decreased the content of exchangeable cations and available silicate after the application of barley straw. Also the content of organic matter, available phosphate and cation exchangeable capacity were increased, whereas caron/nitrogen ratio was decreased in DRI+WRI plot compared with PL+WRI plot. The number of panicles, spikelets per square meter were increased and 1,000 grains weight of hulled rice was gained more in DRI+WRI plot at irrigation rate of $500ton\;ha^{-1}$, in DRI+WRII plot at irrigation rate of $700ton\;ha^{-1}$. So the rice yields were increased by 7%, in DRI+WRI and 5% in DRI+WRII plot, respectively compared with PL+WRI plot. The result of this study indicated that the most appropriate plowing method with barley straw application on rice cultivation at double cropping in normal paddy field plain land was DRI+WRI.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

Production Conditions and Properties of Glucose Isomerase from Streptomyces griseolus (Streptomyces griseolus기원의 포도당 이성화효소의 생성 조건과 성질)

  • 임번삼;전문진
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.51-60
    • /
    • 1983
  • Cultural characteristics of Strptomyces griseolus isolated from the soil were investigated. This strain was disclosed to utilize D-xylose, and D-glactose in preference order as a carbon source with the formation of glucose isomerase. The addition of sweet potato starch also proved effective promoting the total enzyme activity measured at 29% higher than the control. Corn cob, one of waste agricultural resources, was hydrolyzed in 2~3% $H_2SO_4$ solution at $100^{\circ}C$, 3~5 hours to produce a xylose syrup which gave rise to the recovery of 19.9% in a batch system and 28.2% in a repeated system. By the addition of both 2% of xylose syrup(Be'28) prepared by and us 65% of corn steep liquor (total nitrogen 1.2%), enzyme induction was maximized. The enzyme activity was stimulated by the xylose and the cell growth by the C.S.L. Also, remarkable increase of enzyme activity was noticed by the addition of protein acid hydrolysate 86.2% higher than the control. $QO_2$ of the biomass cultured in 30L capacity jarfermentor recorded low oxygen requirement of 251.2 1/hr. Maximum activity of glucose isomerase was observed noted at the 9th hour after inoculation which is 2 hours faster than the stationery was observed noted at the 9th hour after inoculation which is 2 hours faster than the stationery phase of the biomass growth. Glucose isomerase from the strain was activated by adding the $Co^{++}\;and\;Mg^{++}$ with optimum temperature of $73^{\circ}C$ and pH of 7.2. Conversion ratio of 60% glucose to frutose was 42.5% after 70 hours reaction.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.