• Title/Summary/Keyword: Total soil carbon

Search Result 372, Processing Time 0.032 seconds

Bioremediation of Petroleum Contaminated Soils by Pilot Scale Biopile (Pilot 규모 biopile에 의한 유류오염토양의 정화)

  • Yoon, Jeong Ki;Noh, Hoe-Jung;Kim, Hyuk;Kim, Jong Ha;Kim, Tae Seung;Ko, Sung Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.10-18
    • /
    • 2013
  • The pilot scale biopile system was designed and operated for evaluation of bioremediation efficiency for petroleum contaminated soil. The pilot scale biopile consisted of biopile dome, aeration system and monitoring system and two biopiles were operated with nutrients and inoculum for more 100 days. The test pile A and B were analyzed with regard to pH, total carbon contents, water contents, nutrients (N, P) and TPH. The initial TPH concentrations for pile A and pile B were about 10,000 mg/kg and 2,300 mg/kg, respectively. After 100 days, the TPH contents decreased about 70% in the pile A and 30% in the pile B. Also, n-$C_{17}$/pristane and n-$C_{18}$/phytane ratios in all pile were significantly changed. The microbial densities in the pile A was increased by approximately $10^7$ CFU/g-soil~$10^8$ CFU/g-soil, but there was almost no changed in the pile B. The average biodegradation rates were calculated about 66.8 mg/kg-day in the pile A and 10.9 mg/kg-day in the pile B. Over the course of operation period, pile temperature was considered the major limiting factor for the efficiency of all biopiles.

Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province (강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.

Dynamics of the Plant Community Structure and Soil Properties in the Burned and Unburned Areas of the Mt. Ch’olye-san (초례산의 산화지와 비산화지의 식물군집구조 및 토양성분의 동태)

  • Sim, Hak-Bo;Woen Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.417-430
    • /
    • 1996
  • This study was conducted to investigate the developmental process of plant community during the secondary succession and the dynamics of soil properties in the burned and unburned areas of Mt. Ch’oly-san. Owing to the forest fire occurred on April, 1989, the red pine(Pinus densiflora) forest and its floor vegetation were burned down. The floristic composition of burned and unburned areas were composed of 53 and 49 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were lespedeza cyrtobotrya (89.62), Miscanthus sinensis var. purpurascens (62.50), and Carex humilis (58.73), Quercus serrata (43.33). In contrast, Pinus densiflora (83.56), Lespedeza cyrtobotrya (55.57), Miscanthus sinensis var. purpurascens (51.88) and Carex humilis (50.41) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The indices of similarity ($CC_S$) between the two areas were 0.74. Degree of succession (DS) was 604 in the burned area and 802 in the unburned area. From these facts, it is assumed that the succession is rapidly progressing because of the recovery of vegetation. The species diversity ($\={H}$) and evenness index(C) in the burned and unburned areas were 0.15 and 0.18, respectively. Red pine tree did not resprout after scorch by the forest fire, but Lespedeza, Quercus, Rhododendron, Albizzia, and Zanthoxylum resprouted from the roots and trunks after the forest fire. It seems that these species are the fire-resistant species. Soil properties such as soil pH, content of organic matter, available phosphous, total nitrogen, tatal carbon, exchangeable potssium, sodium, calcium, and magnesium increased due to forest fire. These results suggest the intensity of forest fire in the study area was relatively weak. Monthly changes of soil properties were of little significance except for some cases.

  • PDF

Analysis of Health Status of Street Trees and Major Affecting Factors on Deogyeong-daero in Suwon (수원시 덕영대로의 가로수 건강성 평가 및 주요 영향요인 분석)

  • Kim, Eun-Young;Jung, Kyung-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • The street trees increase the liveability of cities by reducing stormwater runoff, improving air quality, storing carbon, providing shade, and ameliorating the urban heat-island effect. In this study, the health status of street trees in Suwon was evaluated, and the factors affecting the growth of the trees were also derived. In order to evaluate the growth and health of street trees, field survey was carried out on a total of 125 trees in 25 sections of the Deogyeong-daero where is through the city. During the field survey, the following items were examined: Street trees health status (i.e. species, height, DBH (diameter at breast height), planting types, vigor, etc.), soil factors (i.e. soil temperature, humidity, pH, hardness, etc.), and environmental factors (i.e. landuse, road width, etc.). As the results of field survey, the main species of the street trees was Zelkova serrata, which was healthy in most of the sections. The factors such as planting types, soil temperatures, tree root cover, road extension, distance from the road were derived to affect the growth and health of street trees, and the differences were significant. The results of this study were derived the following conclusions for vigorous street trees: First, it is important to install and maintain the protection facilities like tree root cover for the growth of trees. Second, it is necessary to discuss how to plant multiple trees in narrow spaces like a street green space. Third, it is important to provide appropriate soil conditions continuously for growth of threes. Finally, it should be utilized as a mitigation measure of urban heat island effects.

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires (산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰)

  • Bae, Hyojin;Choung, Sungwook;Jeong, Jina
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.

Effects of organic fertilizers mixed with dehydrated food waste powder on agronomic performance of leafy vegetables

  • Jae-Han, Lee;You-Jin, Choi; Jin-Hyuk, Chun;Yun-Gu, Kang;Yeo-Uk, Yun;Taek-Keun, Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.397-405
    • /
    • 2022
  • Castor oil cake is widely used as a raw material for organic fertilizers (OF) in Korea. Compared to other fertilizer raw materials, it is highly dependent on imports. In terms of replacing raw materials, dehydrated food waste powder (FDP) and castor oil cake have similar nutritional content, and if 30% is replaced, about 20% of the raw material cost can be saved. However, few studies on the effects on crop growth and soil properties when organic fertilizer and dry food waste powder are mixed and applied to the soil have been reported. The effects of an organic fertilizer made by mixing the commercial available organic fertilizer with dehydrated food waste (OF + FDP) on soil properties and the growth of two types of leafy vegetables (lettuce and young radish) were evaluated and compared with the performance of OF. The fresh weights of lettuce and young radish were the highest with OF amendment and stood at 114.3 and 119.0 g·plant-1, respectively. These were followed by OF + FDP amendment, which produced 103.1 and 109.6 g·plant-1, respectively. Compared to the control, OF and OF + FDP increased the lettuce fresh weights by about 69% and 52%, respectively, while the fresh weights of the radish were increased by about 223% and 207%, respectively. The soil pH, EC, total carbon content, and organic matter content in OF and OF + FDP increased. The mixture of dehydrated food waste powder and organic fertilizers is expected to improve soil quality and facilitate stable production of crops and contribute to the substitution of imported organic fertilizer raw materials.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Effective Suppression of Methane Production by Chelating Nickel of Methanogenesis Cofactor in Flooded Soil Conditions (담수토양에서 메탄생성반응 보효소 니켈의 킬레이팅에 의한 메탄 생산량의 효과적 저감)

  • Kim, Tae Jin;Hwang, Hyun Young;Hong, Chang Oh;Lee, Jeung Joo;Kim, Gun Yeob;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.282-289
    • /
    • 2014
  • BACKGROUND: Methane($CH_4$) is considered as the secondmost potent greenhouse gas after carbon dioxide ($CO_2$). Methanogenesis is an enzyme-mediated multi-step process by methanogens. In the penultimate step, methylated Co-M is reduced by methyl Co-M reductase (MCR) to $CH_4$ involving a nickel-containing cofactor F430. The activity of MCR enzyme is dependent on the F430 and therefore, the bioavailability of Ni to methanogens is expected to influence MCR activity and $CH_4$ production in soil. In this study, different doses of EDTA(Ethylene Diamine Tetraacetic Acid) were applied in flooded soils to evaluate their suppression effect on methane production by chelating Ni of methanogenesis cofactor. METHODS AND RESULTS: EDTA was selected as chelating agents and added into wetland and rice paddy soil at the rates of 0, 25, 50, 75, and $100mmol\;kg^{-1}$ before 4-weeks incubation test. During the incubation, cumulative $CH_4$ production patterns were characterized. At the end of the experiment, soil samples were removed from their jars to analyze total soil Ni and water-soluble Ni content and methanogen abundance. Methane production from 100 mmol application decreased by 55 and 78% in both soils compared to that from 0 mmol. With increasing application rate of EDTA in both soils, water-soluble Ni concentration significantly increased, but total soil Ni and methanogen activities showed negative relationship during incubation test. CONCLUSION: The decrease in methane production with EDTA application was caused by chelating Ni of coenzyme F430 and inhibiting methanogenesis by methyl coenzyme M reductase. Consequently, EDTA application decreased uptake of Ni into methanogen, subsequently inhibited methanogen activities and reduced methane production in flooded soils.

Elevated Temperature Treatment Induced Rice Growth and Changes of Carbon Content in Paddy Water and Soil (온도상승 환경 처리가 논토양과 용수에서 탄소량 변화와 벼 생육에 미치는 영향)

  • Hong, Sung-Chang;Hur, Seung-Oh;Choi, Soon-Kun;Choi, Dong-Ho;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • BACKGROUND: The global mean surface temperature change for the period of 2016~2035 relative to 1986~2005 is similar for the four representative concentration pathway (RCP)'s and will likely be in the range of $0.3^{\circ}C$ to $0.7^{\circ}C$. Climate change inducing higher temperature could affect not only crop growth and yield, but also dynamics of carbon in paddy field. METHODS AND RESULTS: This study was conducted to evaluate the effect of elevated temperature on the carbon dynamics in paddy soil and rice growth. In order to control the elevated temperatures, the experiments were set up as the small scale rectangular open top chambers (OTCs) of $1m(width){\times}1m(depth){\times}1m(height)$ (Type 1), $1 m(W){\times}1m(D){\times}1.2m(H)$ (Type 2), and $1m(W){\times}1m(D){\times}1.4m(H)$ (Type 3). The average temperatures of Type 1, Type 2, and Type 3 from July 15 to October 30 were higher than the ambient temperatures at $0.4^{\circ}C$, $0.5^{\circ}C$, and $0.9^{\circ}C$, respectively. For the experiment, Wagner's pots (1/2,000 area) were placed inside chambers. The pots were filled with loamy soil, and chemical fertilizer and organic compost were applied as recommended after soil test. The pots were flooded with agricultural water and rice (Shindongjin-byeo) was planted. It was observed that TOC (total organic carbon) of the water increased by the elevated temperatures and the trend continued until the late growth stage of the rice. Soil TOC contents were reduced by the elevated temperatures. C/N ratios of the rice plant decreased by the elevated temperature treatments. Thus, it was assumed that the elevated temperatures induced to decompose soil organic matter. Elevated temperatures significantly increased the culm length (P<0.01) and culm weight (P<0.05) of rice, but the number and weight of rice panicle did not showed significant differences. CONCLUSION: Based on the results, it was suggested that the elevated temperatures had an effect on changes of soil and water carbons under the possible future climate change environment.

Development of Organic Fertilizer based on Cow dung I. Studies on Fermentation condition (우분(牛糞)의 유기질비료과(有機質肥料化) 연구(硏究) I. 부숙조건(腐熟條件)에 관(關)한 연구(硏究))

  • Lim, Dong-Kyu;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.130-136
    • /
    • 1991
  • This study was carried out under the appropriate conditions of moisture content(60~70%), C/N ratio(25~30), and C/P ratio(30~35) on the mixed materials of cow dung and rice hulls. The good mixing ratio of cow dung and rice hulls was woth to one on volume basis which was able to adjust to the moisture content and C/N ratio of the mixing material. During fermentation pile period, the mixing ratio of control, non-aerated pile with turning was two to one and that of aerated pile with blower was two ti one. In fermentation pile period, average temperature of aerated pile was $55{\sim}65^{\circ}C$ and it was more higher than control of $40{\sim}50^{\circ}C$ non-aerated pile. While total nitrogen content of aerated pile was lower than that of the control, total carbon content and C/N ratio were higher. In cure pile period, the temperature and C/N ratio of aerated pile were increased at the early stage and then they were decreased, but total nitrogen and total carbon contents of aerated pile were increased in process of days. Final product in aerated pile had more fine particles and was good for the growth of cucumber seedlings than control.

  • PDF