DOI QR코드

DOI QR Code

Elevated Temperature Treatment Induced Rice Growth and Changes of Carbon Content in Paddy Water and Soil

온도상승 환경 처리가 논토양과 용수에서 탄소량 변화와 벼 생육에 미치는 영향

  • Hong, Sung-Chang (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hur, Seung-Oh (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Soon-Kun (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Dong-Ho (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Eun-Suk (Climate Change & Agroecology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 홍성창 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과) ;
  • 허승오 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과) ;
  • 최순군 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과) ;
  • 최동호 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과) ;
  • 장은숙 (농촌진흥청 국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2018.01.02
  • Accepted : 2018.03.07
  • Published : 2018.03.31

Abstract

BACKGROUND: The global mean surface temperature change for the period of 2016~2035 relative to 1986~2005 is similar for the four representative concentration pathway (RCP)'s and will likely be in the range of $0.3^{\circ}C$ to $0.7^{\circ}C$. Climate change inducing higher temperature could affect not only crop growth and yield, but also dynamics of carbon in paddy field. METHODS AND RESULTS: This study was conducted to evaluate the effect of elevated temperature on the carbon dynamics in paddy soil and rice growth. In order to control the elevated temperatures, the experiments were set up as the small scale rectangular open top chambers (OTCs) of $1m(width){\times}1m(depth){\times}1m(height)$ (Type 1), $1 m(W){\times}1m(D){\times}1.2m(H)$ (Type 2), and $1m(W){\times}1m(D){\times}1.4m(H)$ (Type 3). The average temperatures of Type 1, Type 2, and Type 3 from July 15 to October 30 were higher than the ambient temperatures at $0.4^{\circ}C$, $0.5^{\circ}C$, and $0.9^{\circ}C$, respectively. For the experiment, Wagner's pots (1/2,000 area) were placed inside chambers. The pots were filled with loamy soil, and chemical fertilizer and organic compost were applied as recommended after soil test. The pots were flooded with agricultural water and rice (Shindongjin-byeo) was planted. It was observed that TOC (total organic carbon) of the water increased by the elevated temperatures and the trend continued until the late growth stage of the rice. Soil TOC contents were reduced by the elevated temperatures. C/N ratios of the rice plant decreased by the elevated temperature treatments. Thus, it was assumed that the elevated temperatures induced to decompose soil organic matter. Elevated temperatures significantly increased the culm length (P<0.01) and culm weight (P<0.05) of rice, but the number and weight of rice panicle did not showed significant differences. CONCLUSION: Based on the results, it was suggested that the elevated temperatures had an effect on changes of soil and water carbons under the possible future climate change environment.

상승온도 처리에 따른 논토양 탄소의 변동과 벼 생육을 조사한 결과를 요약하면 다음과 같다. 소형 상부개방형 챔버를 이용하여 대기온도 보다 $0.4^{\circ}C$, $0.5^{\circ}C$, $0.9^{\circ}C$ 상승온도 환경을 조성하여 상승온도를 처리할 수 있었다. 사각챔버의 내부온도는 대기보다 평균온도와 최고온도가 높고 최저온도는 낮은 특징을 나타내었다. 상승온도 처리구의 포트 내 표면수의 TOC 농도는 대조구 보다 상승온도 처리구에서 높았고 시간이 경과함에 따라 점차 낮아졌다. 벼 재배후 토양의 TOC 함량은 대조구 보다 상승온도 처리구에서 낮았다. 상승온도 처리로 벼 식물체의 탄소함량은 감소하고 질소함량은 증가하여 C/N 율은 감소하는 경향을 나타내었다. 상승온도 처리로 대조구 보다 벼의 줄기 길이와 줄기무게가 유의하게 증가하였으나 이삭수와 벼 낱알 무게는 유의한 차이를 나타내지 않았다.

Keywords

References

  1. Blanco-Canqui, H., & Lal, R. (2004). Mechanisms of carbon sequestration in soil aggregates. Critical reviews in Plant Sciences, 23(6), 481-504. https://doi.org/10.1080/07352680490886842
  2. Conant, R. T., Ryan, M. G., Agren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvonen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Martin Wetterstedt, J. A., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392-3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x
  3. Cross, H. Z., & Zuber, M. S. (1972). Prediction of Flowering Dates in Maize Based on Different Methods of Estimating Thermal Units 1. Agronomy Journal, 64(3), 351-355. https://doi.org/10.2134/agronj1972.00021962006400030029x
  4. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. https://doi.org/10.1038/nature04514
  5. Dray, M. W., Crowther, T. W., Thomas, S. M., A'Bear, A. D., Godbold, D. L., Ormerod, S. J., Hartly, S. E., & Jones, T. H. (2014). Effects of elevated $CO_2$ on litter chemistry and subsequent invertebrate detritivore feeding responses. PLoS One, 9(1), e86246. https://doi.org/10.1371/journal.pone.0086246
  6. Hinton, M. J., Schiff, S. L., & English, M. C. (1997). The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry, 36(1), 67-88. https://doi.org/10.1023/A:1005779711821
  7. Hobley, E. U., & Wilson, B. (2016). The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere, 7(1), 1-21.
  8. Hope, D., Billett, M. F., & Cresser, M. S. (1994). A review of the export of carbon in river water: fluxes and processes. Environmental pollution, 84(3), 301-324. https://doi.org/10.1016/0269-7491(94)90142-2
  9. Huang, W., Zhou, G., Liu, J., Zhang, D., Xu, Z., & Liu, S. (2012). Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems. Environmental Pollution, 168, 113-120. https://doi.org/10.1016/j.envpol.2012.04.027
  10. Jagadish, S. V. K., Craufurd, P. Q., & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of experimental botany, 58(7), 1627-1635. https://doi.org/10.1093/jxb/erm003
  11. Kobata, T., & Uemuki, N. (2004). High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agronomy Journal, 96(2), 406-414. https://doi.org/10.2134/agronj2004.0406
  12. Kohler, S. J., Buffam, I., Laudon, H., & Bishop, K. H. (2008). Climate's control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. Journal of Geophysical Research: Biogeosciences, 113(G3).
  13. Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
  14. Mathieu, J. A., Hatte, C., Balesdent, J., & Parent, E. (2015). Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Global change biology, 21(11), 4278-4292. https://doi.org/10.1111/gcb.13012
  15. Novotny, A. M., Schade, J. D., Hobbie, S. E., Kay, A. D., Kyle, M., Reich, P. B., & Elser, J. J. (2007). Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of $CO_2$, nitrogen, and diversity. Oecologia, 151(4), 687-696. https://doi.org/10.1007/s00442-006-0599-5
  16. Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperras, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National academy of Sciences of the United States of America, 101(27), 9971-9975. https://doi.org/10.1073/pnas.0403720101
  17. Prasad, P. V. V., Boote, K. J., Allen Jr, L. H., Sheehy, J. E., & Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95(2-3), 398-411. https://doi.org/10.1016/j.fcr.2005.04.008
  18. Ringius, L. (2002). Soil carbon sequestration and the CDM: opportunities and challenges for Africa. Climatic change, 54(4), 471-495. https://doi.org/10.1023/A:1016108215242
  19. Subke, J. A., Inglima, I., & Francesca Cotrufo, M. (2006). Trends and methodological impacts in soil $CO_2$ efflux partitioning: a metaanalytical review. Global Change Biology, 12(6), 921-943. https://doi.org/10.1111/j.1365-2486.2006.01117.x
  20. Townsend, A. R., Vitousek, P. M., Desmarais, D. J., & Tharpe, A. (1997). Soil carbon pool structure and temperature sensitivity inferred using $CO_2$ and $^{13}CO_2$ incubation fluxes from five Hawaiian soils. Biogeochemistry, 38(1), 1-17. https://doi.org/10.1023/A:1017942918708
  21. Trumbore, S. (2009). Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 37, 47-66. https://doi.org/10.1146/annurev.earth.36.031207.124300
  22. Urban, N. R., Bayley, S. E., & Eisenreich, S. J. (1989). Export of dissolved organic carbon and acidity from peatlands. Water Resources Research, 25(7), 1619-1628. https://doi.org/10.1029/WR025i007p01619
  23. White II, D. A., Welty-Bernard, A., Rasmussen, C., & Schwartz, E. (2009). Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma, 150(1-2), 214-223. https://doi.org/10.1016/j.geoderma.2009.02.011
  24. Yan, W., & Hunt, L. A. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5), 607-614. https://doi.org/10.1006/anbo.1999.0955
  25. Yoshida, S., Satake, T., & Mackill, D. S. (1981). High-temperature stress in rice [study conducted at IRRI, Philippines]. IRRI Research Paper Series 67, 1-15.
  26. Agren, A., Berggren, M., Laudon, H., & Jansson, M. (2008). Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshwater Biology, 53(5), 964-972. https://doi.org/10.1111/j.1365-2427.2008.01955.x