• Title/Summary/Keyword: Total soil carbon

Search Result 375, Processing Time 0.025 seconds

Evaluation of Soil Redox Capacity using Chromium Oxidation-reduction Reactions in Volcanic Ash Soils in Jeju Island (크롬산화환원반응을 이용한 제주도 화산회토양 내 토양산화환원능 평가)

  • Chon, Chul-Min;Ahn, Joo-Sung;Kim, Kue-Young;Park, Ki-Hwa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-175
    • /
    • 2008
  • The soil developed from volcanic ash in Jeju Island, Korea, were classified as typical Andisols. The soils had acidic pH, high water contents, high organic matters and clay-silty textures. The crystalline minerals of the samples were mainly composed of ferromagnesian minerals such as olivine and pyroxene, and iron oxides such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found at the subsurface horizon as a secondary product from the migration of excessive aluminum. In addition, our study has shown that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in Jeju soils. The contents of $SiO_2$ were lower than those of other soil orders, but $A1_2O_3$ and $Fe_2O_3$ contents were higher. These results are some of the important chemical properties of Andisols. The contents of heavy metals were in the range of $84{\sim}198$ for Zn, $56{\sim}414$ for Ni, $38{\sim}150$ for Co, $132{\sim}1164\;mg\;kg^{-1}$ for Cr, which are higher than the worldwide values in most of the soils. Some soil samples contained relatively high levels of Cr exceeding 1000 mg/kg. Mean reduction capacity of the Jeju soils was $6.53\;mg\;L^{-1}$ reduced Cr(VI), 5.1 times higher than that of the non-volcanic ash soils from inland of Korea. The soil reduction capacity of the inland soils had a good correlation with total carbon content (R = 0.90). However, in spite of 20 times higher total carbon contents in the Jeju soils, there was a week negative correlation between the reduction capacity and the carbon content (R = -0.469), suggesting that the reduction capacity of Jeju soils is not mainly controlled by the carbon content and affected by other soil properties. Correlations of the reduction capacity with major elements showed that Al and Fe were closely connected with the reduction capacity in Jeju soil (R = 0.793; R = 0.626 respectively). Moreover, the amounts of Ni, Co and Cr had considerable correlations with the reduction capacity (R = 0.538; R = 0.647; R = 0.468 respectively). In particular, in relation to the behavior of redox-sensitive Cr, the oxidation of the trivalent chromium to mobile and toxic hexavalent chromium can be restricted by the high reduction capacity in Jeju soil. The factors controlling the reduction capacity in Jeju soils may have a close relation with the andic soil properties explained by the presence of considerable allophane and ferrihydrite in the soils.

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.

Carbon Forestry: Scope and Benefit in Bangladesh

  • Rahman, Md. Siddiqur;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.249-256
    • /
    • 2013
  • The aim of the study was to reveal the scope and benefits derives from establishing carbon forests in a country like Bangladesh. Carbon forestry is the modernized forestry practice that evolves no cutting of trees or vegetation rather conserves them in the wood. Trees might be the source of carbon sink at large scale by establishing carbon forests. To find out how and in what extent forests of Bangladesh could contribute to global emission reduction, tree species of economic importance were taken into account about their carbon sequestration potential. Data source was a secondary one. Bangladesh has subtropical evergreen and deciduous forest tree species. Here trees can sequester almost 45-55 percent organic carbon in their biomass. On an average, trees in different types of stands can sequester 150-300 tC/ha. Carbon value of these forests might be 7,500-15,000 USD per hactre (assuming 50 USD per equivalent $tCO_2$). Thus, accounting tree carbon credits of total forested lands of Bangladesh, there might be a lump sum value of $1.89{\times}10^{10}-3.79{\times}10^{10}$ USD. If soil carbon is added, this amount would jump. Alternatively, there are two times higher spaces as marginal lands than this for starting carbon forestry. However, carbon forestry concept is still a theoretical conception unless otherwise their challenges are addressed and solved. Despite of this, forests of Bangladesh might be the key showcase for conserving biodiversity in association with carbon capture. Protected areas in Bangladesh are of government wealth, however, degraded and denuded waste and marginal lands might be the best fit for establishing carbon forests.

Contrast Effect of Citric Acid and Ethylenediaminetetraacetic Acid on Cadmium Extractability in Arable Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.634-640
    • /
    • 2015
  • Chelating agents have been proposed to improve the efficiency of phytoextraction of heavy metal hyperaccumulator. However, little studies to elucidate mechanism of chelating agents to increase cadmium (Cd) extractability have been conducted. The objectives of this study were to evaluate effect of different chelating agents on Cd extractability and to determine mechanism of Cd mobilization affected by these agents. An arable soil was spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of $20mgCdkg^{-1}$. Ethylenediaminetetraacetic acid (EDTA) and citric acid (CA) were selected and mixed with the arable soil at the rates of 0 and $5mmolkg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 4 weeks in dark condition. Concentration of F1 Cd fractions (water soluble) significantly increased with addition of EDTA but did not changed with addition of CA. Especially; concentration of F5 Cd fractions (residual) significantly increased with addition of CA. Increase in water soluble with EDTA might be attributed to complexation of Cd and EDTA. Dissolved organic carbon concentration significantly increased with EDTA addition, but did not with CA implying that considerable amount of CA was decomposed to inorganic carbon by microorganism. Log activity of carbonate ($CO_3{^{2-}}$) which might be generated from CA increased with addition of CA. Increase in residual Cd fraction might be due to precipitation of Cd as $CdCO_3$. As a result, EDTA was effective in increasing Cd extractability, by contrast CA had significant effect in reducing Cd extractability.

Mechanism of P Solubilization in Vermicompost Treated Red Lateritic Soils

  • Pramanik, Prabhat;Chakraborty, Hritesh;Kim, Pil-Joo
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.188-195
    • /
    • 2011
  • Red lateritic soils are typically low in total organic carbon (TOC) and available phosphorus (AP) content and continuous fertilization is required to obtain desired crop yield. In this experiment, cattle manure in three forms (air-dried, composted and vermicomposted) were applied to red lateritic soil to study their effect on TOC and AP content of soil and probable mechanism of P-solubilization as affected by these treatments were also studied. Vermicompost was the most effective to solubilize insoluble P in red lateritic soil (Alfisols) as compared to other organic amendments (air-dried cattle manure and compost). The highest SPA in vermicompost-treated soil attributed to the comparatively higher concentration of all the three SPA isozymes in these soils. The maximum P-solubilization in these soils might be attributed to the highest SPA and presence of several organic acids like citric, lactic and oxalic acids in vermicompost-treated soils. Since, vermicompost application also increased TOC, mineralizable N and exchangeable K content of soil, vermicompost could be considered as the most rational organic amendment to improve chemical properties of red lateritic soils.

  • PDF

Effects of Short-Term Soil Tillage Management on Activity and Community Structure of Denitrifiers under Double-Cropping Rice Field

  • Tang, Haiming;Li, Chao;Cheng, Kaikai;Shi, Lihong;Wen, Li;Xiao, Xiaoping;Xu, Yilan;Li, Weiyan;Wang, Ke
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1688-1696
    • /
    • 2020
  • Soil physical and chemical characteristics, soil potential denitrification rates (PDR), community composition and nirK-, nirS- and nosZ-encoding denitrifiers were studied by using MiSeq sequencing, quantitative polymerase chain reaction (qPCR), and terminal restriction fragment polymorphism (T-RFLP) technologies base on short-term (5-year) tillage field experiment. The experiment included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), and rotary tillage with crop residue removed as control (RTO). The results indicated that soil organic carbon, total nitrogen and NH4+-N contents were increased with CT, RT and NT treatments. Compared with RTO treatment, the copies number of nirK, nirS and nosZ in paddy soil with CT, RT and NT treatments were significantly increased. The principal coordinate analysis indicated that tillage management and crop residue returning management were the most and the second important factors for the change of denitrifying bacteria community, respectively. Meanwhile, this study indicated that activity and community composition of denitrifiers with CT, RT and NT treatments were increased, compared with RTO treatment. This result showed that nirK, nirS and nosZ-type denitrifiers communities in crop residue applied soil had higher species diversity compared with crop residue removed soil, and denitrifying bacteria community composition were dominated by Gammaproteobacteria, Deltaproteobacteria, and Betaproteobacteria. Therefore, it is a beneficial practice to increase soil PDR level, abundance and community composition of nitrogen-functional soil microorganism by combined application of tillage with crop residue management.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria (토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해)

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.861-866
    • /
    • 2013
  • The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.

A Study on the Carbon Budget in Pinus koreansis Plantation (잣나무 조림지의 탄소수지에 관한 연구)

  • 표재훈;김세욱;문형태
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.129-134
    • /
    • 2003
  • Amounts of CO₂ fixed by net primary production and released by soil respiration were determined on big-cone pine plantation. Net primary production, which was determined by allometric method, was converted into CO₂. CO₂ evolution in forest ecosystems are mainly through soil and root respiration. In order to separate root respiration from soil respiration, root-free sites were made in stand. Litter removal sites were prepared to estimate CO₂ evolution through litter layer. Respiration was measured at every two weeks intervals from April 2001 through April 2002, and soil temperature and soil moisture were measured at the same time. Net primary production of this big-cone pine plantation was 25.7 t·ha/sup -1/·yr/sup -1/. The amount of CO₂ fixed by this plantation was 42.5 t CO₂·ha/sup -1/·yr/sup -1/, The amount of CO₂ released by soil respiration was 5.0 t CO₂·ha/sup -1/·yr/sup -1/. The relative contribution of root respiration and litter layer respiration to total respiration was 46% and 32%, respectively. Net amount of fixed CO₂ was 37.5 t CO₂·ha/sup -1/·yr/sup -1/ in this big-cone pine plantation. From this result, this big-cone pine plantation play a carbon sink source from the atmosphere.

Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea

  • Jeong, Heon-Mo;Jang, Rae-Ha;Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.6
    • /
    • pp.165-172
    • /
    • 2017
  • Background: This study investigated the temporal variation in soil $CO_2$ efflux and its relationship with soil temperature and precipitation in the Quercus glauca and Abies koreana forests in Jeju Island, South Korea, from August 2010 to December 2012. Q. glauca and A. koreana forests are typical vegetation of warm-temperate evergreen forest zone and sub-alpine coniferous forest zone, respectively, in Jeju island. Results: The mean soil $CO_2$ efflux of Q. glauca forest was $0.7g\;CO_2\;m^{-2}\;h^{-1}$ at $14.3^{\circ}C$ and that of A. koreana forest was $0.4g\;CO_2\;m^{-2}\;h^{-1}$ at $6.8^{\circ}C$. The cumulative annual soil $CO_2$ efflux of Q. glauca and A. koreana forests was 54.2 and $34.2t\;CO_2\;ha^{-1}$, respectively. Total accumulated soil carbon efflux in Q. glauca and A. koreana forests was 29.5 and $18.7t\;C\;ha^{-1}$ for 2 years, respectively. The relationship between soil $CO_2$ efflux and soil temperate at 10 cm depth was highly significant in the Q. glauca ($r^2=0.853$) and A. koreana forests ($r^2=0.842$). Soil temperature was the main controlling factor over $CO_2$ efflux during most of the study period. Also, precipitation may affect soil $CO_2$ efflux that appeared to be an important factor controlling the efflux rate. Conclusions: Soil $CO_2$ efflux was affected by soil temperature as the dominant control and moisture as the limiting factor. The difference of soil $CO_2$ efflux between of Q. glauca and A. koreana forests was induced by soil temperature to altitude and regional precipitation.