Evaluation of Soil Redox Capacity using Chromium Oxidation-reduction Reactions in Volcanic Ash Soils in Jeju Island

크롬산화환원반응을 이용한 제주도 화산회토양 내 토양산화환원능 평가

  • Chon, Chul-Min (Korea Institute of Geoscience and Mineral Resources, Groundwater & Geothermal Resources Division) ;
  • Ahn, Joo-Sung (Korea Institute of Geoscience and Mineral Resources, Groundwater & Geothermal Resources Division) ;
  • Kim, Kue-Young (Korea Institute of Geoscience and Mineral Resources, Groundwater & Geothermal Resources Division) ;
  • Park, Ki-Hwa (Korea Institute of Geoscience and Mineral Resources, Groundwater & Geothermal Resources Division)
  • 전철민 (한국지질자원연구원 지하수지열연구부) ;
  • 안주성 (한국지질자원연구원 지하수지열연구부) ;
  • 김구영 (한국지질자원연구원 지하수지열연구부) ;
  • 박기화 (한국지질자원연구원 지하수지열연구부)
  • Published : 2008.06.30

Abstract

The soil developed from volcanic ash in Jeju Island, Korea, were classified as typical Andisols. The soils had acidic pH, high water contents, high organic matters and clay-silty textures. The crystalline minerals of the samples were mainly composed of ferromagnesian minerals such as olivine and pyroxene, and iron oxides such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found at the subsurface horizon as a secondary product from the migration of excessive aluminum. In addition, our study has shown that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in Jeju soils. The contents of $SiO_2$ were lower than those of other soil orders, but $A1_2O_3$ and $Fe_2O_3$ contents were higher. These results are some of the important chemical properties of Andisols. The contents of heavy metals were in the range of $84{\sim}198$ for Zn, $56{\sim}414$ for Ni, $38{\sim}150$ for Co, $132{\sim}1164\;mg\;kg^{-1}$ for Cr, which are higher than the worldwide values in most of the soils. Some soil samples contained relatively high levels of Cr exceeding 1000 mg/kg. Mean reduction capacity of the Jeju soils was $6.53\;mg\;L^{-1}$ reduced Cr(VI), 5.1 times higher than that of the non-volcanic ash soils from inland of Korea. The soil reduction capacity of the inland soils had a good correlation with total carbon content (R = 0.90). However, in spite of 20 times higher total carbon contents in the Jeju soils, there was a week negative correlation between the reduction capacity and the carbon content (R = -0.469), suggesting that the reduction capacity of Jeju soils is not mainly controlled by the carbon content and affected by other soil properties. Correlations of the reduction capacity with major elements showed that Al and Fe were closely connected with the reduction capacity in Jeju soil (R = 0.793; R = 0.626 respectively). Moreover, the amounts of Ni, Co and Cr had considerable correlations with the reduction capacity (R = 0.538; R = 0.647; R = 0.468 respectively). In particular, in relation to the behavior of redox-sensitive Cr, the oxidation of the trivalent chromium to mobile and toxic hexavalent chromium can be restricted by the high reduction capacity in Jeju soil. The factors controlling the reduction capacity in Jeju soils may have a close relation with the andic soil properties explained by the presence of considerable allophane and ferrihydrite in the soils.

제주도 화산회 기원 토양시료들은 전형적인 안디졸에 해당하는데 낮은 pH, 높은 수분함량, 높은 유기물함량, 식질-미사질 토성을 보여주었다. 결정질 광물 중 현무암 기원의 감람석, 휘석 등의 철고토광물과 자철석 및 적철석 등의 산화철이 주구성광물로 관찰되며 이차광물인 깁사이트가 일부 심토에서 나타나는 것이 특징이다. 그밖에 제주도 화산회 토양은 비정질 알로판 광물과 ferrihydrite 등의 결정도가 낮은 광물을 상당량 포함하고 있다. 주성분원소는 비화산회토양에 비해 상대적으로 낮은 $SiO_2$ 함량과 높은 $A1_2O_3$$Fe_2O_3$ 함량을 보이는데 이는 전형적인 화산회토의 특성을 반영한다. 토양 내 중금속 함량 중에서 Zn, Ni, Co, Cr은 각자 $84{\sim}198$, $56{\sim}414$, $38{\sim}150$, $132{\sim}1164\;mg\;kg^{-1}$의 범위를 보여 일반적인 세계 토양 내 함량범위를 초과하는 것으로 나타났다. 특히 Cr의 경우 1,000 ppm 이상의 함량을 가지는 토양 시료도 존재하는 등 제주도 화산회 토양은 높은 Cr 함량을 보이는 것이 특징이다. 제주도 토양의 환원능은 평균 $6.53\;mg\;L^{-1}$ reduced Cr(VI)로서 내륙의 비화산회토양에 비해 5.1배 이상 큰 것으로 나타났다. 비화산회토양의 경우 토양 환원능은 토양의 이화학적 인자 중 총 탄소함량과 매우 좋은 상관관계(R = 0.90)를 보이고 있는 것으로 보고되었으나, 총 탄소함량이 일반 토양에 비해 20배 이상 큰 제주도 화산회 토양의 경우 환원능은 탄소함량과는 오히려 약한 음의 상관관계를 보여주고 있다(R = -0.469). 이러한 결과는 제주도 화산회 토양의 환원능을 제어하는 인자가 탄소함량뿐만 아니라 또 다른 토양 이화학성에 있음을 지시한다. 주성분 원소조성과 환원능의 상관관계분석결과 화산회토 특성을 반영하는 Al과 Fe 원소와 정의 상관관계(R = 0.793, R = 0.626)를 보여주었다. 또한 중금속 원소 중 Ni, Co, Cr 등은 제주도 화산회 토양의 환원능과 정의 상관관계(R = 0.538, R = 0.647, R = 0.468)를 보이고 있다. 산화환원전위에 민감한 Cr 원소의 경우 제주도 화산회토양의 높은 환원능으로 인해 유해하고 이동성이 높은 6가 크롬의 생성 및 이동이 매우 제한될 것으로 판단된다. 또한 제주도 화산회 토양의 환원능을 제어하는 인자는 비정질인 알로판 광물 및 ferrihydrite 등의 화산회토 특성과 밀접한 관련이 있는 것으로 판단된다.

Keywords

References

  1. 농업기술연구소 (1976) 제주도 정밀토양도
  2. 농촌진흥청 (2003) 토양조사 이론과 실무기술, 농촌진흥청 호남농업시험장, p. 300
  3. 환경부 (2007) 2006년 토양측정망 및 실태조사 결과
  4. Alloway, B.J. (1990) Heavy Metals in Soils, Blackie Press, Glasgow, London, p. 350
  5. Bartlett, R.J. and James B.R. (1979) Behavior of chromium in soils: III. Oxidation. J. Environ. Qual., 8, 31-35 https://doi.org/10.2134/jeq1979.00472425000800010008x
  6. Bartlett, R.J. and James B.R. (1996) Chromium. In: Sparks, D.L. (eds), Methods of soil analysis: Part 3. Chemical methods, Soil Sci. Soc. Am. Book Series 5, SSSA, Madison, WI, 683-701
  7. Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., and Herbillon, A.J. (2006) Sources of trace metals in Ferralsols in New Caledonia. European Journal of Soil Science, 57, 200-213 https://doi.org/10.1111/j.1365-2389.2005.00730.x
  8. Becquer, T., Quantin, C., Sicot, M., and Boudot, J.P. (2003) Chromium availability in ultramafic soils from New Caledonia. Sci. Tot. Environ., 301, 251-261 https://doi.org/10.1016/S0048-9697(02)00298-X
  9. Bertsch, P.M. and Bloom, P.R. (1996) Aluminium. In: Sparks, D.L. (eds), Methods of soil analysis. Part 3 Chemical methods. Soil Science Society of America and American Society of Agronomy, 517-550
  10. Burt, R., Wilson, M.A., Mays, M.D., and Lee, C.W. (2003) Major and trace elements of selected pedons in the USA. J. Environ. Qual., 32, 2109-2121 https://doi.org/10.2134/jeq2003.2109
  11. Childs, C.W. (1985) Towards understanding soil mineralogy. II. Notes on ferrihydrite. NZ Soil Bureau Laboratory Report CM7. Lower Hutt, NZ
  12. Chon, C.-M., Kim, J.G., Lee, G.H., and Kim, T.H. (2007) Influence of extractable soil manganese on oxidation capacity of different soils in Korea. Environmental Geology, online print
  13. Chuan, M.C., Shu, G.Y., and Liu, J.C. (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water, Air, and Soil Pollution, 90, 543-556 https://doi.org/10.1007/BF00282668
  14. Farrell, R.E., Swerhone, G.D.W., and Van Kessel, C. (1991) Construction and evaluation of a reference electrode assembly for use in monitoring in situ soil redox potentials. Commun. Soil Sci. Plant Anal. 22, 1059-1068 https://doi.org/10.1080/00103629109368474
  15. Heron, G., Christensen, T.H., and Tjell, J.C. (1994) Oxidation capacity of aquifer sediments. Environmental Science and Technology, 28, 153-158 https://doi.org/10.1021/es00050a021
  16. James, B.R. and Bartlett. R.J. (1983) Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual., 12, 177-181 https://doi.org/10.2134/jeq1983.00472425001200020005x
  17. Kabata-Pendias, A. and Pendias, H. (2001) Trace elements in soils and plants. CRC Press, Boca raton, Fla. 413p.
  18. Kim, J.G. and Dixon, J.B. (2002) Oxidation and Fate of Chromium in Soils. Soil Sci. Plant Nutr. 48, 483-490 https://doi.org/10.1080/00380768.2002.10409230
  19. Loeppert, R.H. and Inskeep, W.P. (1996) Iron. In: Sparks, D.L. (eds), Methods of soil analysis. Part 3 Chemical methods. Soil Science Society of America and American Society of Agronomy, 639-664
  20. Massoura, S.T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., and Morel, J.L. (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136, 28-37 https://doi.org/10.1016/j.geoderma.2006.01.008
  21. Nanzyo, M. (2003) Unique properties of volcanic ash soils. Global Environmental Research, 6, 99-112
  22. National Institute of Agricultural Science and Technology (2000) Taxanomical Classification of Korean Soils, NIAST, Suwon, Korea
  23. Palmer, C.D. and Puls., R.W. (1994) Natural attenuation of hexavelent chromium in ground water and soils. EPA/540/S-94/505
  24. Parfitt, R. L. and Wilson, A. D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. In Volcanic Soils, Weathering and Landscape Relationships of Soils on Tephra and Basalt. E. Fernandez-Caldas and D.H. Yaalon (eds.). ISSS-AISS-IBG, Cremlingen. Catena Suppl. 7, 1-8
  25. Parfitt, R.L. (1990) Allophane in New Zealand - a review. Aust. J. Soil Res., 28, 343-360 https://doi.org/10.1071/SR9900343
  26. Risser, J.A. and Bailey, G.W. (1992) Spectroscopic study of surface redox reactions with manganese oxides. Soil Sci. Soc. An. J., 56, 82-88 https://doi.org/10.2136/sssaj1992.03615995005600010013x
  27. Robles-Camacho, J. and Armienta, M.A. (2000) Natural chromium contamination of groundwater at Leon Valley, Mexico. J. Geochem. Explor., 68, 167-181 https://doi.org/10.1016/S0375-6742(99)00083-7
  28. Shin, J.S. and Tavernier, R. (1988) Composition and Genesis of Volcanic Ash Soils in Jeju Island II. Mineralogy of sand, silt and clay fractions. 한국광물학회지, 1, 40-47
  29. Takeda, A., Kimura, K., and Yamasaki, S. (2004) Analysis of 57 elements in Japanese soils, with special reference to soil group and agriculture use. Geoderma, 119, 291-307 https://doi.org/10.1016/j.geoderma.2003.08.006